We introduce the space-time (ST) vector light sheet. This unique one-dimensional ST wave packet is characterized by classical entanglement (CE), a correlation between at least two non-separable intrinsic degrees-of-freedom (DoFs), which in this case are the spatiotemporal DoFs in parallel with the spatial-polarization DoFs. We experimentally confirm that the ST vector light sheet maintains the intrinsic features of the uniformly polarized ST light sheet, such as near-diffraction-free propagation and self-healing, while also maintaining the intrinsic polarization structure of common vector beams, such as those that are radially polarized and azimuthally polarized. We also show that the vector beam structure of the ST vector light sheet is maintained in the subluminal and superluminal regimes.
The capacity of self-healing fields to reconstruct after passing through scattering media may prove useful in reducing speckle formation. Here, we study the speckle response of the space–time (ST) light sheet compared to a Gaussian wave packet, Airy beam, and Bessel Gauss beam. We find that the Pearson’s correlation coefficient for the ST light sheet is 50%, 48% and 40% larger than that of the Gaussian, Airy beam and Bessel Gauss beams, respectively, demonstrating a strong correlation to an input beam that has not been speckled. These results suggest that the ST light sheet exhibits considerable resistance to speckle generation. We also investigate the speckle response of the ST light sheet at its second-harmonic frequency and observe a mean Pearson’s correlation coefficient close to 0.6, comparable to the second-harmonic Bessel Gauss beam, and 2.8 × the value obtained for the second-harmonic Gaussian beam. Our results lend themselves to a variety of applications including bioimaging, communications, and optical tweezers.
The entropy associated with an optical field quantifies the field fluctuations and thus its coherence. Any binary optical degree-of-freedom (DoF) – such as polarization or the field at a pair of points in space – can each carry up to one bit of entropy. We demonstrate here that entropy can be reversibly swapped between different DoFs, such that coherence is converted back and forth between them without loss of energy. Specifically, starting with a spatially coherent but unpolarized field carrying one bit of entropy, we unitarily convert the coherence from the spatial DoF to polarization to produce a spatially incoherent but polarized field by swapping the entropy between the two DoFs. Next, we implement the inverse unitary operator, thus converting the coherence back to yield once again a spatially coherent yet unpolarized field. We exploit the intermediate stage between the two coherence conversions – where the spatial coherence has been converted to the polarization DoF – to verify that the field has become immune to the deleterious impact of spatial phase scrambling. Maximizing the spatial entropy protects the spatial DoF by preventing it from taking on any additional fluctuations. After the second coherence conversion, spatial coherence is readily retrieved, and the effect of spatial phase scrambling circumvented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.