Host–parasite interactions are shaped by the broader web of community interactions, from interspecific competition to predator–prey dynamics. Heterospecific scavengers might also affect parasite transmission from infectious carcasses, which can be an important source of infections for some wildlife diseases.
A robust scavenger community can quickly remove carcasses and tissue and thus prevent secondary transmission by necrophagy or contact with infectious carcasses. Alternatively, by spreading infectious particles and tissues throughout the environment, scavengers may increase rates of casual contact with pathogens and thus overall transmission. However, there has been little empirical consideration of the contrasting roles that scavengers might play in infectious disease dynamics.
We carried out a series of studies to determine the efficiency with which scavenging invertebrates remove carcasses of Long‐toed Salamander (Ambystoma macrodactylum) larvae and their role in the transmission of frog virus 3 (Genus: Ranavirus, Family: Iridoviridae) from carcasses. We then estimated the functional response of one efficient invertebrate scavenger (Family: Dytiscidae) to increasing carcass densities in field conditions in order to determine the capacity of scavenging invertebrates to consume large amounts of carcass tissue, as may be present at high prevalence sites.
We found that removal of infectious carcasses by scavengers strongly reduced transmission to naïve larvae. Scavengers were as effective at reducing transmission from a carcass as a physical barrier preventing contact with the carcass. There was little evidence that scavenging released sufficient infectious tissues into the water column to rival direct contact as a route of infection. Moreover, while scavenging rates saturated at increasing carcass densities, consistent with a type II functional response, there were sufficient densities of dytiscid larvae, not to mention other scavenging invertebrates, in a surveyed pond to theoretically prevent transmission from carcasses.
Our results suggest that at least in systems in which conspecific necrophagy is common, the scavenger community can play an important role in reducing transmission.
A plain language summary is available for this article.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.