Background:Sports-related concussions (SRC) among high school and collegiate athletes represent a significant public health concern. The Concussion in Sport Group (CIS) recommended greater caution regarding return to play with children and adolescents. We hypothesized that younger athletes would take longer to return to neurocognitive baseline than older athletes after a SRC.Methods:Two hundred adolescent and young adult athletes who suffered a SRC were included in our clinical research cohort. Of the total participants, 100 were assigned to the 13-16 year age group and 100 to the 18-22 year age group and were matched on the number of prior concussions. Each participant completed baseline and postconcussion neurocognitive testing using the Immediate Post-Concussion assessment and Cognitive Testing (ImPACT) test battery. Return to baseline was defined operationally as post-concussion neurocognitive and symptom scores being equivalent to baseline using reliable change index (RCI) criteria. For each group, the average number of days to return to cognitive and symptom baseline were calculated. Independent sample t-tests were used to compare the mean number of days to return to baseline.Results:Significant differences were found for days to return to baseline between 13-16 year olds and 18-22 year olds in three out of four neurocognitive measures and on the total symptom score. The average number of days to return to baseline was greater for 13-16 year olds than for 18-22 year olds on the following variables: Verbal memory (7.2 vs. 4.7, P = 0.001), visual memory (7.1 vs. 4.7, P = 0.002), reaction time (7.2 vs. 5.1 P = 0.01), and postconcussion symptom scale (8.1 vs. 6.1, P = 0.026). In both groups, greater than 90% of athletes returned to neurocognitive and symptom baseline within 1 month.Conclusions:Our results in this clinical research study show that in SRC, athletes 13-16 years old take longer to return to their neurocognitive and symptom baselines than athletes 18-22 years old.
Subarachnoid hemorrhage (SAH) is characterized by bleeding into the subarachnoid space, often caused by ruptured aneurysm. Aneurysmal rupture occurs in 700,000 individuals per year worldwide, with 40,000 cases taking place in the United States. Beyond the high mortality associated with SAH alone, morbidity and mortality are further increased with the occurrence of cerebral vasospasm, a pathologic constriction of blood vessels that can lead to delayed ischemic neurologic deficits (DIND). Treatment of cerebral vasospasm is a source of contention. One extensively studied therapy is Magnesium (Mg) as both a competitive antagonist of calcium at the N-methyl D-aspartate (NMDA) receptor, and a noncompetitive antagonist of both IP3 and voltage-gated calcium channels, leading to smooth muscle relaxation. In our literature review, several animal and human studies are summarized in addition to two Phase III trials assessing the use of intravenous Mg in the treatment of SAH (IMASH and MASH-2). Though many studies have shown promise for the use of Mg in SAH, there has been inconsistency in study design and outcomes. Furthermore, the results of the recently completed clinical trials have shown no significant benefit from using intravenous Mg as adjuvant therapy in the treatment of cerebral vasospasm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.