Ethereum is the largest and most prominent smart contract platform.One key property of Ethereum is that once a contract is deployed, it can not be updated anymore. This increases the importance of thoroughly testing the behavior and constraints of the smart contract before deployment. Existing approaches in related work either do not scale or are only focused on finding crashing inputs. In this tool demo, we introduce SynTest-Solidity, an automated test case generation and fuzzing framework for Solidity. SynTest-Solidity implements various metaheuristic search algorithms, including random search (traditional fuzzing) and genetic algorithms (i.e., NSGA-II, MOSA, and DynaMOSA). Finally, we performed a preliminary empirical study to assess the effectiveness of SynTest-Solidity in testing Solidity smart contracts. CCS CONCEPTS• Software and its engineering → Search-based software engineering; Software testing and debugging.
Software testing is an important and time-consuming task that is often done manually. In the last decades, researchers have come up with techniques to generate input data (e.g., fuzzing) and automate the process of generating test cases (e.g., search-based testing). However, these techniques are known to have their own limitations: search-based testing does not generate highly-structured data; grammar-based fuzzing does not generate test case structures. To address these limitations, we combine these two techniques. By applying grammar-based mutations to the input data gathered by the search-based testing algorithm, it allows us to co-evolve both aspects of test case generation. We evaluate our approach, called G-EvoSuite, by performing an empirical study on 20 Java classes from the three most popular JSON parsers across multiple search budgets. Our results show that the proposed approach on average improves branch coverage for JSON related classes by 15 % (with a maximum increase of 50 %) without negatively impacting other classes. CCS CONCEPTS• Software and its engineering → Search-based software engineering; Software testing and debugging.
With the ever-increasing use of web APIs in modernday applications, it is becoming more important to test the system as a whole. In the last decade, tools and approaches have been proposed to automate the creation of system-level test cases for these APIs using evolutionary algorithms (EAs). One of the limiting factors of EAs is that the genetic operators (crossover and mutation) are fully randomized, potentially breaking promising patterns in the sequences of API requests discovered during the search. Breaking these patterns has a negative impact on the effectiveness of the test case generation process. To address this limitation, this paper proposes a new approach that uses Agglomerative Hierarchical Clustering (AHC) to infer a linkage tree model, which captures, replicates, and preserves these patterns in new test cases. We evaluate our approach, called LT-MOSA, by performing an empirical study on 7 real-world benchmark applications w.r.t. branch coverage and real-fault detection capability. We also compare LT-MOSA with the two existing state-of-the-art white-box techniques (MIO, MOSA) for REST API testing. Our results show that LT-MOSA achieves a statistically significant increase in test target coverage (i.e., lines and branches) compared to MIO and MOSA in 4 and 5 out of 7 applications, respectively. Furthermore, LT-MOSA discovers 27 and 18 unique real-faults that are left undetected by MIO and MOSA, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.