Hepatotoxicity is a serious problem during drug development and for the use of many established drugs. For example, acetaminophen overdose is currently the most frequent cause of acute liver failure in the United States and Great Britain. Evaluation of the mechanisms of drug-induced liver injury indicates that mitochondria are critical targets for drug toxicity, either directly or indirectly through formation of reactive metabolites. The consequence of these modifications is generally a mitochondrial oxidant stress and peroxynitrite formation, which leads to structural alterations of proteins and mitochondrial DNA and eventually to the opening of mitochondrial membrane permeability transition (MPT) pores. MPT pore formation results in collapse of the mitochondrial membrane potential and cessation of ATP synthesis. In addition, the release of intermembrane proteins such as apoptosis-inducing factor and endonuclease G and their translocation to the nucleus leads to nuclear DNA fragmentation. Together these events trigger necrotic cell death. Alternatively, release of cytochrome c and other pro-apoptotic factors from mitochondria can promote caspase activation and apoptotic cell death. Drug toxicity can also induce an inflammatory response with formation of reactive oxygen species by Kupffer cells and neutrophils. If not properly detoxified, these extracellularly generated oxidants can diffuse into hepatocytes and trigger mitochondrial dysfunction and oxidant stress, which then induces the MPT and necrotic cell death. This review addresses the formation of oxidants and the defense mechanisms available for the cells and applies this knowledge to better understand mechanisms of drug hepatotoxicity, especially acetaminophen-induced liver injury.
Acetaminophen (APAP) overdose is the predominant cause of acute liver failure in the United States. Toxicity begins with a reactive metabolite that binds to proteins. In rodents, this leads to mitochondrial dysfunction and nuclear DNA fragmentation, resulting in necrotic cell death. While APAP metabolism is similar in humans, the later events resulting in toxicity have not been investigated in patients. In this study, levels of biomarkers of mitochondrial damage (glutamate dehydrogenase [GDH] and mitochondrial DNA [mtDNA]) and nuclear DNA fragments were measured in plasma from APAP-overdose patients. Overdose patients with no or minimal hepatic injury who had normal liver function tests (LTs) (referred to herein as the normal LT group) and healthy volunteers served as controls. Peak GDH activity and mtDNA concentration were increased in plasma from patients with abnormal LT. Peak nuclear DNA fragmentation in the abnormal LT cohort was also increased over that of controls. Parallel studies in mice revealed that these plasma biomarkers correlated well with tissue injury. Caspase-3 activity and cleaved caspase-3 were not detectable in plasma from overdose patients or mice, but were elevated after TNF-induced apoptosis, indicating that APAP overdose does not cause apoptosis. Thus, our results suggest that mitochondrial damage and nuclear DNA fragmentation are likely to be critical events in APAP hepatotoxicity in humans, resulting in necrotic cell death.
Acetaminophen (APAP) is one of the most widely used drugs. Though safe at therapeutic doses, overdose causes mitochondrial dysfunction and centrilobular necrosis in the liver. The first studies of APAP metabolism and activation were published more than forty years ago. Most of the drug is eliminated by glucuronidation and sulfation. These reactions are catalyzed by UDP-glucuronosyltransferases (UGT1A1 and 1A6) and sulfotransferases (SULT1A1, 1A3/4, and 1E1), respectively. However, some is converted by CYP2E1 and other cytochrome P450 enzymes to a reactive intermediate that can bind to sulfhydryl groups. The metabolite can deplete liver glutathione (GSH) and modify cellular proteins. GSH binding occurs spontaneously, but may also involve GSH-S-transferases. Protein binding leads to oxidative stress and mitochondrial damage. The glucuronide, sulfate, and GSH conjugates are excreted by transporters in the canalicular (Mrp2 and Bcrp) and basolateral (Mrp3 and Mrp4) hepatocyte membranes. Conditions that interfere with metabolism and metabolic activation can alter the hepatotoxicity of the drug. Recent data providing novel insights into these processes, particularly in humans, are reviewed in the context of earlier work, and the effects of altered metabolism and reactive metabolite formation are discussed. Recent advances in the diagnostic use of serum adducts are covered.
Background & Aims Full length keratin-18 (FL-K18) and High Mobility Group Box-1 (HMGB1) represent circulating indicators of necrosis during acetaminophen (APAP) hepatotoxicity in vivo. In addition, the caspase-cleaved fragment of K18 (cK18) and hyper-acetylated HMGB1 represent serum indicators of apoptosis and immune cell activation respectively. The study aim was to assess their mechanistic utility to establish the balance between apoptosis, necrosis and immune cell activation throughout the time course of clinical APAP hepatotoxicity. Methods HMGB1 (total, acetylated) and K18 (apoptotic, necrotic) were identified and quantified by novel LC-MS/MS assays in APAP overdose patients (n=78). Results HMGB1 (total; 15.4±1.9ng/ml, p<0.01, acetylated; 5.4±2.6ng/ml, p<0.001), cK18 (5649.8±721.0U/l, p<0.01) and FL-K18 (54770.2±6717.0U/l, p<0.005) were elevated in the sera of APAP overdose patients with liver injury compared to overdose patients without liver injury and healthy volunteers. HMGB1 and FL-K18 correlated with alanine aminotransferase (ALT) activity (R2=0.60 and 0.58 respectively, p<0.0001) and prothrombin time (R2=0.62 and 0.71 respectively, p<0.0001). Increased total and acetylated HMGB1 and FL-K18 were associated with worse prognosis (King’s College Criteria) or patients that died/required liver transplant compared to spontaneous survivors (all p<0.05-0.001), a finding not reflected by ALT and supported by ROC analysis. Acetylated HMGB1 was a better predictor of outcome than the other markers of cell death. Conclusion K18 and HMGB1 represent blood-based tools to investigate the cell death balance clinical APAP hepatotoxicity. Activation of the immune response was seen later in the time course as shown by the distinct profile of acetylated HMGB1 and was associated with worse outcome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.