Isometric embedding of non-Euclidean color spaces into Euclidean color spaces is investigated. Owing to regions of nonzero Gaussian curvature within common non-Euclidean color spaces, we focus on the determination of transformations into Euclidean spaces with minimal isometric disagreement. A computational method is presented for deriving such a color space transformation by means of a multigrid optimization, resulting in a simple color look-up table. The multigrid optimization is applied on the CIELAB space with the CMC, CIE94, and CIEDE2000 formulas. The mean disagreement between distances calculated by these formulas and Euclidean distances within the new spaces is far below 3% for all investigated color difference formulas. Color space transformations containing the inverse transformations are provided as MATLAB scripts at the first author's website.
LCD televisions have LC response times and hold-type data cycles that contribute to the appearance of blur when objects are in motion on the screen. New algorithms based on studies of the human visual system's sensitivity to motion are being developed to compensate for these artifacts. This paper describes a series of experiments that incorporate eyetracking in the psychophysical determination of spatio-velocity contrast sensitivity in order to build on the 2D spatiovelocity contrast sensitivity function (CSF) model first described by Kelly and later refined by Daly. We explore whether the velocity of the eye has an additional effect on sensitivity and whether the model can be used to predict sensitivity to more complex stimuli. There were a total of five experiments performed in this research. The first four experiments utilized Gabor patterns with three different spatial and temporal frequencies and were used to investigate and/or populate the 2D spatio-velocity CSF. The fifth experiment utilized a disembodied edge and was used to validate the model. All experiments used a two interval forced choice (2IFC) method of constant stimuli guided by a QUEST routine to determine thresholds. The results showed that sensitivity to motion was determined by the retinal velocity produced by the Gabor patterns regardless of the type of motion of the eye. Based on the results of these experiments the parameters for the spatio-velocity CSF model were optimized to our experimental conditions.
Reconstruction of spectral images from camera responses is investigated using an edge preserving spatio-spectral Wiener estimation. A Wiener denoising filter and a spectral reconstruction Wiener filter are combined into a single spatio-spectral filter using local propagation of the noise covariance matrix. To preserve edges the local mean and covariance matrix of camera responses is estimated by bilateral weighting of neighboring pixels. We derive the edge-preserving spatio-spectral Wiener estimation by means of Bayesian inference and show that it fades into the standard Wiener reflectance estimation shifted by a constant reflectance in case of vanishing noise. Simulation experiments conducted on a six-channel camera system and on multispectral test images show the performance of the filter, especially for edge regions. A test implementation of the method is provided as a MATLAB script at the first author's website.
A display tool has been developed to perform simulation and three-dimensional rendering of prints in the quest towards achieving improved soft proofing capabilities. It was desired through this 3D simulation that the gloss and surface properties of hardcopy prints be represented on a d i s p l a y, which are absent in current 2D soft proofing workflows. The procedure is described along with the relevant historical work. The major components of the workflow are identified as: the gloss prediction model, and the representation of this gloss on a display using computer graphics rendering techniques. Psychophysical experiments were carried out to evaluate the usefulness of this 3D simulation over current 2D soft proofing technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.