Experimental data and a model are presented which define the boundary values of V/III flux ratio and growth temperature for droplet-assisted nucleation of InAs semiconductor nanowires in selective-area epitaxy on SiO(x)/Si (111) substrates by molecular beam epitaxy. Within these boundaries, the substrate receives a balanced flux of group III and V materials allowing the growth of vertically oriented nanowires as compared to the formation of droplets or crystallites.
Vertical III-V nanowires are capable of resonant absorption at specific wavelengths by tuning the nanowire diameter, thereby exceeding the absorption of equivalent thin films. These properties may be exploited to fabricate multispectral infrared (IR) photodetectors, directly integrated with Si, without the need for spectral filters or vertical stacking of heterostructures as required in thin film devices. In this study, multiple InAsSb nanowire arrays were grown simultaneously on Si by molecular beam epitaxy with nanowire diameter controlled by the nanowire period (spacing between nanowires). This is the first such study of patterned InAsSb nanowires where control of nanowire diameter and multispectral absorption are demonstrated. The antimony flux was used to control axial and radial growth rates using a selective-area catalyst-free growth method, achieving large diameters, spanning 440–520 nm, which are necessary for optimum IR absorption. Fourier transform IR spectroscopy revealed IR absorptance peaks due to the HE11 resonance of the nanowire arrays in agreement with optical simulations. Due to the dependence of the HE11 resonance absorption on nanowire diameter, multispectral absorption was demonstrated in a single material system and a single epitaxial growth step without the need for bandgap tuning. This work demonstrates the potential of InAsSb nanowires for multispectral photodetectors and sensor arrays in the short-wavelength IR region.
An analytical growth model is presented to explain the influence of antimony fractional flux on the morphology evolution of catalyst-free InAs1−xSbx semiconductor nanowires grown by the selective-area vapor–solid mechanism on a Si (111) substrate by molecular beam epitaxy. Increasing Sb fractional flux promoted radial growth and suppressed axial growth, resulting in ‘nano-disks’. This behavior is explained by a model of indium adatom diffusion along nanowire facets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.