Under the NASA University Leadership Initiative (ULI) program, a team of universities are collaborating on the advancement of technologies a hybrid turboelectric regional jet, with an intent to enter service in the 2030 timeframe. In the previous studies of the ULI program, the in-service benefits of the technologies under development were analyzed by integrating the technologies of interest to a 2030 regional jet with a hybrid turbo-electric distributed propulsion system. As the program has progressed, the projected performances for each technology and subsystem have been updated. This paper presents an update in the sizing and performance analysis of the regional jet with the hybrid turbo-electric distributed propulsion system, by integrating the updated values of the technologies and subsystems to the vehicle. The updates in this paper include the DC/AC conversion links, efficiency of generator and cabling losses, weight of the wires, the battery cooling through the environmental control system, motor and inverter cooling by the thermal management system, and the redundancy strategy of the propulsion system. The updates of the results from the integrated model include the overall efficiency of the propulsion system, mission fuel savings, mission energy flow distribution, and the optimal hybridization rate in climb and cruise. The overall fuel saving benefit for the target 600-nmi mission is 19.9% compared to the baseline aircraft.
A team of researchers from multiple universities are collaborating on the demonstration of a hybrid turboelectric regional jet for 2030 under the NASA ULI Program. The thermal management is one of the major challenges for the development of such an electric propulsion concept. Existing studies hardly modeled the thermal management systems with the propulsion systems nor integrated it to the aircraft for system-and mission-level analyses. Therefore, it is very difficult to verify whether a design of the thermal management system is feasible and optimal based on current literature. To fill this gap, this paper presents a design of the thermal management system for the hybrid turboelectric regional jet under the ULI program and integrates it to the aircraft. The TMS is tested against the cooling requirements, where the thermal loads from the electric propulsion system are quantified through the whole mission. Potential solutions for peak thermal loads during takeoff and climb are also proposed and analyzed, where additional coolant or phase change materials are used. Moreover, the impacts of the TMS on the system-and missionlevel performance are investigated by the presented integration approach as well. It is discovered that a basic oil-air thermal management system cannot fully remove the heat during the early mission segments. Using additional coolant or phase change materials as heat absorption can handle such heating problem, but penalty due to additional weight is added. It is found that greater penalties in fuel burn and takeoff weight are added by additional coolant solution than the phase change material solution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.