Rail switches are critical infrastructure components of a railroad network, that must maintain high-levels of reliable operation. Given the vast number and variety of switches that can exist across a rail network, there is an immediate need for robust automated methods of detecting switch degradations and failures without expensive add-on equipment. In this work, we explore two recent machine learning frameworks for classifying various switch degradation indicators: (1) a featureless recurrent neural network called a Long Short-Term Memory (LSTM) architecture, and (2), the Deep Wavelet Scattering Transform (DWST), which produces features that are locally time invariant and stable to time-warping deformations. We describe both methods as they apply to rail switch monitoring and demonstrate their feasibility on a dataset captured under the service conditions by Alstom Corporation. For multiple categories of degradation types, the baseline models consistently achieve near-perfect accuracies and are competitive with the manual analysis conducted by human switch-maintenance experts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.