A sensorless control scheme based on an unknown input observer is presented in this paper in which back EMF of the Brushless DC Motor (BLDC) is continuously estimated from available line voltages and currents. During negative rotation of motor, actual and estimated speed fail to track the reference speed and if the corrective action is not taken by the observer, the motor goes into saturation. To overcome this problem, the speed estimation algorithm has been implemented in this paper to control the dynamic behavior of the motor during negative rotation. The Ackermans method was used to calculate the gains of an unknown input observer which is based on the appropriate choice of the eigenvalues in advance. The criteria to choose eigenvalue is to obtain a balance between faster convergence rate and the least noise level. Simulations have been carried out for different disturbances such as step changes in motor reference speed and load torque. The comparative simulation results clearly depict that the disturbance effects in actual and estimated responses minimizes as observer gain setting increases.
The observer design for estimation of back EMF to control the Brushless DC (BLDC) motor is proposed in this paper. Rotor position of the BLDC motor is estimated using the sequence of estimated back EMF. During speed reversal of motor, the actual and estimated values of speed fail to track the reference speed and if corrective action is not taken by the observer, the motor goes into the unstable region. To overcome this problem, the speed estimation algorithm is proposed for BLDC motor control during its speed reversal operation. Infinite Impulse Response (IIR) Butterworth first order low-pass filters are used in the observer for smoothing the estimated back EMFs of the BLDC motor. A new controller scheme based on Modified Hybrid Fuzzy PI (MHFPI) controller is proposed to control the speed of the BLDC motor. The effectiveness of the proposed method has been validated through simulations for different disturbances such as step changes in the reference speed and load torque of the motor and results are compared with the existing methods.
Purpose The purpose of this paper is to develop a generalized observer and controller for brushless direct current (BLDC) motor to make the system more robust for parameter variations, load torque and speed tracking. Design/methodology/approach A robust interconnection and damping assignment passivity-based control (IDA-PBC) technique for BLDC motor is introduced in this paper. The IDA-PBC is used to obtain the reference voltages for pulse width modulation (PWM) control. The immersion and invariance (I&I) observer is used to estimate the load torque and speed of the BLDC motor. At the time of starting, the motor rotates in arbitrary direction, and sometimes, because of the cogging action, it may take a huge current. Therefore, a new start-up method is proposed for the BLDC motor, which maintains the alignment of the rotor. Findings From the simulation and experimental results, it can be seen that the proposed controller and observer satisfactorily work for parameter variations, load torque and speed tracking. Originality/value The authenticity of the proposed technique is tested experimentally on two different BLDC motors using low-cost 32-bit STM32F407VG microcontroller. The response of the proposed technique is evaluated by changing motor parameters such as stator resistance, inductance, flux linkage constant and torque constant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.