Research reported in this publication was supported by the Eunice Kennedy Shriver National Institute of Child Health and Human Development of the National Institutes of Health under award number P50 HD071836 to C.T.R. and award number OD 011092 from the Office of the Director, National Institutes of Health, for operation of the Oregon National Primate Research Center. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
Small ubiquitin-like modifier (SUMO) modification modulates the expression of defense genes in Drosophila, activated by the Toll/nuclear factor-κB and immune-deficient/nuclear factor-κB signaling networks. We have, however, limited understanding of the SUMO-modulated regulation of the immune response and lack information on SUMO targets in the immune system. In this study, we measured the changes to the SUMO proteome in S2 cells in response to a lipopolysaccharide challenge and identified 1619 unique proteins in SUMO-enriched lysates. A confident set of 710 proteins represents the immune-induced SUMO proteome and analysis suggests that specific protein domains, cellular pathways, and protein complexes respond to immune stress. A small subset of the confident set was validated by in-bacto SUMOylation and shown to be bona-fide SUMO targets. These include components of immune signaling pathways such as Caspar, Jra, Kay, cdc42, p38b, 14-3-3ε, as well as cellular proteins with diverse functions, many being components of protein complexes, such as prosß4, Rps10b, SmD3, Tango7, and Aats-arg. Caspar, a human FAF1 ortholog that negatively regulates immune-deficient signaling, is SUMOylated at K551 and responds to treatment with lipopolysaccharide in cultured cells. Our study is one of the first to describe SUMO proteome for the Drosophila immune response. Our data and analysis provide a global framework for the understanding of SUMO modification in the host response to pathogens.
BackgroundReduced physical activity and increased intake of calorically-dense diets are the main risk factors for obesity, glucose intolerance, and type 2 diabetes. Chronic overnutrition and hyperglycemia can alter gene expression, contributing to long-term obesity complications. While caloric restriction can reduce obesity and glucose intolerance, it is currently unknown whether it can effectively reprogram transcriptome to a pre-obesity level. The present study addressed this question by the preliminary examination of the transcriptional dynamics in skeletal muscle after exposure to overnutrition and following caloric restriction.ResultsSix male rhesus macaques of 12–13 years of age consumed a high-fat western-style diet for 6 months and then were calorically restricted for 4 months without exercise. Skeletal muscle biopsies were subjected to longitudinal gene expression analysis using next-generation whole-genome RNA sequencing. In spite of significant weight loss and normalized insulin sensitivity, the majority of WSD-induced (n = 457) and WSD-suppressed (n = 47) genes remained significantly dysregulated after caloric restriction (FDR ≤0.05). The MetacoreTM pathway analysis reveals that western-style diet induced the sustained activation of the transforming growth factor-β gene network, associated with extracellular matrix remodeling, and the downregulation of genes involved in muscle structure development and nutritional processes.ConclusionsWestern-style diet, in the absence of exercise, induced skeletal muscle transcriptional programing, which persisted even after insulin resistance and glucose intolerance were completely reversed with caloric restriction.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-017-3799-y) contains supplementary material, which is available to authorized users.
The bone marrow stroma maintains hematopoiesis and coordinately regulates regenerative responses through dynamic interactions with hematopoietic stem and progenitor cells. Recent studies indicate that stromal components in the bone marrow of leukemia patients undergo a process of successive adaptation that in turn exerts dramatic effects on the hematopoietic stem cell compartment and promotes leukemic drug resistance. Therefore, functional changes in discrete marrow stromal populations can be considered an aspect of leukemia biogenesis in that they create an aberrant, self-reinforcing microenvironment. In this review, we will describe the current understanding of the remodeling of the hematopoietic stem cell niche following invasion by leukemia cells. We place emphasis on existing evidence of how mesenchymal stem cells and their progeny facilitate neoplastic growth and describe available models and analytical techniques to understand the conversion of the niche toward disease persistence. STEM CELLS 2018;36:304-312 SIGNIFICANCE STATEMENTThere is increasing awareness that the bone marrow microenvironment is a critical contributor to therapeutic resistance and relapse progression in hematological malignancies. Experimental evidence discussed herein highlights key aspects of the stromal conversion by leukemia and the resulting aberrant signaling within the niche. This article discusses the advantages and limitations of available experimental model system and emphasizes open scientific questions and opportunities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.