BackgroundThe use of three-dimensional (3D) surface imaging is becoming more popular and accepted in the fields of Medicine and Dentistry. The present study aims to develop a technique to automatically localise and quantify soft-tissue asymmetry in adults using 3D facial scans. This may be applied as a diagnostic tool to monitor growth and dynamic changes and to evaluate treatment outcomes.Methods3D facial surface data were captured from 55 adults comprising 28 symmetrical faces and 27 asymmetrical faces using a 3dMDface system. A landmark-independent method, which compared the original and the mirrored 3D facial data, was developed to quantify the asymmetry. A Weibull distribution-based probabilistic model was generated from the root-mean-square (RMS) error data for the symmetrical group to designate a level of asymmetry which represented a normal range.ResultsStatistically significant (p < 0.0001) differences in the RMS error values were found when comparing symmetrical with asymmetrical groups and a similarly significant difference was identified between the lower and the upper face of the asymmetrical group.ConclusionsThe proposed 3D imaging-based method of identifying and quantifying facial soft-tissue asymmetry was fast and effective. The Weibull distribution-based comparison of a person’s asymmetry with respect to a large sample of symmetrical faces may also be used to evaluate growth, soft-tissue compensations and surgical outcomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.