We report the stoichiometric epitaxial growth of the Eu2Ir2O7 (111) thin film on YSZ substrate by a two-step solid phase epitaxy (SPE) method. An optimized post-annealing environment of the SPE was superior over the conventional air annealing procedure to get rid of the typical impurity phase, Eu2O3. The thickness-dependent structural study on Eu2Ir2O7 (111) thin films suggests a systematic control of Ir/Eu stoichiometry in our films, which is otherwise difficult to achieve. In addition, the low-temperature electrical resistivity studies strongly support the claim. The power-law dependence analysis of the resistivity data exhibits a power exponent of 0.52 in 50 nm sample suggesting possible disorder-driven semimetalic charge transport in the 3D Weyl semimetallic candidate Eu2Ir2O7 . In addition, the all-in-all-out/all-out-all-in antiferromagnetic domains of Ir4+ sublattice is verified using the field cooled magnetoresistance measurements at 2 K. Hall resistivity analysis indicate semimetallic hole carrier type dominance near the Fermi level up to the measured temperature range of 2-120 K. Altogether, our study reveals the ground state of stoichiometric Eu2Ir2O7 (111) thin film, with an indirect tuning of the off-stoichiometry using thickness of the samples, which is of interest in the search of the predicted 3D Weyl semimetallic phase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.