Meso-and microscale sheet metal forming represents new and attractive solutions to many manufacturing problems for product miniaturization. Larger organizations are utilizing commercially available microscale digital image correlation systems to measure the strains on these scales. The cost of these systems is preventing smaller research and development organizations from entering this challenging area or they are sacrificing the ability to determine strains and evaluate material behavior at the microscale. However, microscale strain grid measurement has the advantage over digital image correlation when the researchers wish to avoid polishing and etching the surface of the sheet metal to make the grain structure visible for digital image correlation and where tooling interferes with obtaining images of the workpiece in real time. This article evaluates the strain measurement and strains resulting from multiscale sheet metal hydroforming operations for annealed 0.2-mm-thick ASTM 304 stainless steel using a simple method for producing microscale grids that has been previously described. The gridding methodology was shown to be accurate with high repeatability. In addition, a strain grid measurement method using an optical microscope and digital camera is described and an error analysis was performed. Provided reasonable care is taken, the inherent error in undeformed parts is 0.76% of true strain for samples with 127 mm grids using the strain measurement system described. The maximum variation in the mesoscale and microscale strain measurement static bulge testing was 62.4% and more typically 61.3% of true strain. With care, the errors were reduced to less than 1% of strain. Microscale strains from sheet bulge hydroforming experiments for 11, 5, and 1 mm diameter dies are used to show that the strains measured are reasonable and consistent.
Producing fuel cells bipolar plates and other devices such as microscale heat exchangers for electronics requires both macroscale and microscale forming processes. At the macroscale, typically, mechanical properties of sheet metal are determined by performing tensile tests. In addition, it has long been recognized that bi-axial tension tests, dome tests, and hydroforming or viscous bulge tests provide the basis for improved understanding of the mechanics of sheet metal forming. At the microscale strain gauges are too large for measuring strains in small regions and membrane theory is only valid at the poles of the bulge. Continuum mechanics models are useful but require tedious thickness measurements for multiple work pieces, requiring extensive sample preparation and analysis. In this paper experimental results from hydroforming tests for 0.2-mm thick annealed ASTM 304 stainless steel sheet in 11 mm, 5 mm, and 1 mm diameter open dies at various pressures were evaluated. The height of the bulge at the pole and strains based upon measurements of 127 micron strain grids were determined. These dies represent the transition from a small macroscale process to a microscale forming process. Two methods were used to estimate material properties: an analytical model and an iterative method which compared experimental strain results with the strains from a finite element model where the Holloman constitutive properties of the sheet were varied. The problems estimating material properties based upon grid strain measurement, membrane theory, and the iterative finite element approaches were investigated and the results were compared. This study indicates that membrane theory will provide adequate predictions for Holloman constructive properties provided the assumptions for membrane theory are not violated. However, using measured microscale grid deformation strains does not produce very good agreement estimates of the Holloman constitutive model when comparing experimental results with FEA strains. It is believed that while the grid strain measurement method used results in strain measurement errors of less than 1.5% of strain, this error is sufficient to result in enough uncertainty to produce results that are inconsistent with other methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.