As the outbreak of COVID-19 has accelerated, an urgent need for finding strategies to combat the virus is growing. Thus, gaining more knowledge on the pathogenicity mechanism of SARS-CoV-2, the causing agent of COVID-19, and its interaction with the immune system is of utmost importance. Although this novel virus is not well known yet, its structural and genetic similarity with SARS-CoV as well as the comparable pattern of age-mortality relations suggest that the previous findings on SARS can be applicable for COVID-19. Therefore, a systems biology study was conducted to investigate the underlying mechanism for the differences in the age-specific mortality of SARS and the most important signaling pathways activated by the virus. The results were then validated through a literature review on COVID-19 and the other closely related viruses, SARS and MERS. Interferons have shown to possess a crucial role in the defense against coronavirus diseases. The virus can impede the interferon induction in humans. Moreover, STAT1, a key protein in the interferon mediated immune response, is antagonized by the virus. This could explain the increased response threshold of immune cells to IFNs during CoV infections. A vivid correlation between the innate immune response threshold and the fatality rates in COVID-19 can be found. Differences in the dynamics of the interferons-related innate immune responses in children, adults and elderly may explain the reported fatality rates. The increased mortality rates in the elderly can be explained by the higher threshold of interferon-mediated immune responses. Earlier induction of interferons in children and their less developed immune system could be the reason behind their zero or near to zero fatality rate. Administration of interferon-inducing agents, such as Poly (ICLC), could reduce the mortality of SARS at the very early stages of the disease. Adding interferon-γ to an interferon-I, as a synergistic combination therapy, might maximize the benefits.At the later stages of the disease, however, the balance of the immune reactions would be disrupted and the responses would shift toward immnopathogenic over-reactions and probably cytokine storm. Moderating the activity of the immune system and supportive care in such conditions might be the optimum approach.
As the outbreak of COVID-19 has accelerated, an urgent need for finding strategies to combat the virus is growing. Thus, gaining more knowledge on the pathogenicity mechanisms of SARS-CoV-2, the causing agent of COVID-19, and its interaction with the immune system is of utmost importance. Although this novel virus is not well known yet, its structural and genetic similarity with SARS-CoV as well as the comparable pattern of age-mortality relations suggest that the previous findings on SARS can be applicable for COVID-19. Therefore, a systems biology study was conducted to investigate the most important signaling pathways activated by the virus. The results were then validated through a literature review on COVID-19 and the other closely related viruses, SARS and MERS. Interferons have shown to play a crucial role in the defense against coronavirus diseases. CoV can impede the interferon induction in humans. Moreover, STAT1, a key protein in the interferon-mediated immune response, is antagonized by the virus. This could explain the increased response threshold of immune cells to IFNs during CoV infections. A vivid correlation between the innate immune response threshold and the fatality rates in COVID-19 can be found. Differences in the dynamics of the interferon-related innate immune responses in children, adults, and elderly may explain the reported fatality rates. The increased mortality rates in the elderly can be explained by the higher threshold of interferon-mediated immune responses. Earlier induction of interferons in children and their less developed immune system could contribute to their near to zero fatality rate. Administration of interferon-inducing agents, such as poly (ICLC), could reduce the mortality of SARS at the very early stages of the disease. Interferon-γ combination with an interferon-I might induce synergistic effects and maximize the benefits. However, in-depth research is needed to validate it and determine the optimum dosage and timing to prevent unwanted results. Such interventions can act as a double-edged sword and aid the imbalance of the immune reactions, which may occur at the later stages of the disease. With the advancement of the disease and the virus overload, the responses would shift toward immnopathogenic over-reactions and probably cytokine storm. Moderating the activity of the immune system and supportive care in such conditions might be the optimum approach.
Aging is correlated with several complex diseases, including type 2 diabetes, neurodegeneration diseases, and cancer. Identifying the nature of this correlation and treatment of age-related diseases has been a major subject of both modern and traditional medicine. Traditional Persian Medicine (TPM) embodies many prescriptions for the treatment of ARDs. Given that autophagy plays a critical role in antiaging processes, the present study aimed to examine whether the documented effect of plants used in TPM might be relevant to the induction of autophagy? To this end, the TPM-based medicinal herbs used in the treatment of the ARDs were identified from modern and traditional references. The known phytochemicals of these plants were then examined against literature for evidence of having autophagy inducing effects. As a result, several plants were identified to have multiple active ingredients, which indeed regulate the autophagy or its upstream pathways. In addition, gene set enrichment analysis of the identified targets confirmed the collective contribution of the identified targets in autophagy regulating processes. Also, the protein–protein interaction (PPI) network of the targets was reconstructed. Network centrality analysis of the PPI network identified mTOR as the key network hub. Given the well-documented role of mTOR in inhibiting autophagy, our results hence support the hypothesis that the antiaging mechanism of TPM-based medicines might involve autophagy induction. Chemoinformatics study of the phytochemicals using docking and molecular dynamics simulation identified, among other compounds, the cyclo-trijuglone of Juglans regia L. as a potential ATP-competitive inhibitor of mTOR. Our results hence, provide a basis for the study of TPM-based prescriptions using modern tools in the quest for developing synergistic therapies for ARDs.
Background: As the outbreak of COVID-19 has accelerated, an urgent need for finding strategies to combat the virus is growing. Thus, gaining more knowledge on the pathogenicity mechanism of SARS-CoV-2, the causing agent of COVID-19, and its interaction with the immune system is of utmost importance. Although this novel virus is not well known yet, its structural and genetic similarity with SARS-CoV as well as the comparable pattern of age-mortality relations suggest that some previous findings on SARS could be applicable for COVID-19. Objective: The aim of this study was to investigate the most important signaling pathways activated by coronaviruses to better understand the viral pathogenesis and host immune responses. Method: Here, a systems biology study was conducted on a SARS database. It was followed by a literature review on the cognate subject. Results: It was proved that interferons may possess a crucial role in the defense against coronavirus diseases. The literature supported the validity of the employed approach and the notion that interferon induction could play a key role in the body defense against coronavirus infections. Conclusion: Altogether, administration of interferons or interferon-inducing agents in a prophylactic manner or at early stages of the disease, could mimic the effective antiviral responses against SARS-CoV-2 and reduce the disease severity. At later stages of the disease, however, the balance of the immune reactions would be disrupted and the responses would shift toward immunopathogenic over-reactions, which could be exacerbated by interferon usage. Moderating the activity of the immune system by anti-inflammatory agents, might be the optimum approach in such conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.