Topological insulators with novel surfaces or edge states are the topological nature sequel of bulk electronic wave functions of these materials. The observed signatures in the electronic structure of topological insulators can make them excellent candidates for thermoelectric materials. Low dimensional materials such as phosphorene and Bi 2 Te 3 nanowire have been confirmed to be desirable for the design of devices with high thermoelectric performance. So in this work, the phonon modes, formation energy and cohesive energy of LaX (X = Sb, Bi) monolayers are first calculated and investigated. Then the band order of these monolayers is investigated by the band structure calculations and the topological phase of these monolayers is proved by using the calculation of Z 2 topological invariant. The energy band gap and the band inversion strength of these monolayers are evaluated under in-plane strains. Also, the effect of different temperatures and in-plane strains on the thermoelectric performance of LaX monolayers is studied. The results show the high thermoelectric efficiency and d-p topological band inversion of these monolayers under compressive strains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.