A wireless sensor network (WSN) is defined as a set of spatially distributed and interconnected sensor nodes. WSNs allow one to monitor and recognize environmental phenomena such as soil moisture, air pollution, and health data. Because of the very limited resources available in sensors, the collected data from WSNs are often characterized as unreliable or uncertain. However, applications using WSNs demand precise readings, and uncertainty in data reading can cause serious damage (e.g., health monitoring data). Therefore, an efficient local/distributed data processing algorithm is needed to ensure: (1) the extraction of precise and reliable values from noisy readings; (2) the detection of anomalies from data reported by sensors; and (3) the identification of outlier sensors in a WSN. Several works have been conducted to achieve these objectives using several techniques such as machine learning algorithms, mathematical modeling, and clustering. The purpose of this paper is to conduct a systematic literature review to report the available works on outlier and anomaly detection in WSNs. The paper highlights works conducted from January 2004 to October 2018. A total of 3520 papers are reviewed in the initial search process. Later, these papers are filtered by title, abstract, and contents, and a total of 117 papers are selected. These papers are examined to answer the defined research questions. The current paper presents an improved taxonomy of outlier detection techniques. This will help researchers and practitioners to find the most relevant and recent studies related to outlier detection in WSNs. Finally, the paper identifies existing gaps that future studies can fill.
Summary Wireless sensor networks (WSNs) consist of small sensors with limited computational and communication capabilities. Reading data in WSN is not always reliable due to open environmental factors such as noise, weakly received signal strength, and intrusion attacks. The process of detecting highly noisy data is called anomaly or outlier detection. The challenging aspect of noise detection in WSN is related to the limited computational and communication capabilities of sensors. The purpose of this research is to design a local time‐series‐based data noise and anomaly detection approach for WSN. The proposed local outlier detection algorithm (LODA) is a decentralized noise detection algorithm that runs on each sensor node individually with three important features: reduction mechanism that eliminates the noneffective features, determination of the memory size of data histogram to accomplish the effective available memory, and classification for predicting noisy data. An adaptive Bayesian network is used as the classification algorithm for prediction and identification of outliers in each sensor node locally. Results of our approach are compared with four well‐known algorithms using benchmark real‐life datasets, which demonstrate that LODA can achieve higher (up to 89%) accuracy in the prediction of outliers in real sensory data.
Wireless sensor networks (WSNs) have recently attracted greater attention worldwide due to their practicality in monitoring, communicating, and reporting specific physical phenomena. The data collected by WSNs is often inaccurate as a result of unavoidable environmental factors, which may include noise, signal weakness, or intrusion attacks depending on the specific situation. Sending high-noise data has negative effects not just on data accuracy and network reliability, but also regarding the decision-making processes in the base station.Anomaly detection, or outlier detection, is the process of detecting noisy data amidst the contexts thus described. The literature contains relatively few noise detection techniques in the context of WSNs, particularly for outlier-detection algorithms applying time series analysis, which considers the effective neighbors to ensure a global-collaborative detection. Hence, the research presented in this article is intended to design and implement a global outlier-detection approach, which allows us to find and select appropriate neighbors to ensure an adaptive collaborative detection based on time-series analysis and entropy techniques. The proposed approach applies a random forest algorithm for identifying the best results. To measure the effectiveness and efficiency of the proposed approach, a comprehensive and real scenario provided by the Intel Berkeley Research Laboratory has been simulated. Noisy data have been injected into the collected data randomly. The results obtained from the experiment then conducted experimentation demonstrate that our approach can detect anomalies with up to 99% accuracy.
Wireless Sensor Networks (WSNs) have recently attracted greater attention worldwide due to their practicality in monitoring, communicating, and reporting specific physical phenomena. The data collected by WSNs is often inaccurate as a result of unavoidable environmental factors, which may include noise, signal weakness, or intrusion attacks depending on the specific situation. Sending high-noise data has negative effects not just on data accuracy and network reliability, but also regarding the decision-making processes in the base station.Anomaly detection, or outlier detection, is the process of detecting noisy data amidst the contexts thus described. The literature contains relatively few noise detection techniques in the context of WSNs, particularly for outlier-detection algorithms applying time series analysis, which considers the effective neighbors to ensure a global-collaborative detection. Hence, the research presented in this paper is intended to design and implement a global outlier-detection approach, which allows us to find and select appropriate neighbors to ensure an adaptive collaborative detection based on time-series analysis and entropy techniques.The proposed approach applies a random forest algorithm for identifying the best results. To measure the effectiveness and efficiency of the proposed approach, a comprehensive and real scenario provided by the Intel Berkeley Re-
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.