Graphene nanosheet-bisphenol A polycarbonate nanocomposites (0.027-2.2 vol %) prepared by both emulsion mixing and solution blending methods, followed by compression molding at 287 °C, exhibited dc electrical percolation threshold of ∼0.14 and ∼0.38 vol %, respectively. The conductivities of 2.2 vol % graphene nanocomposites were 0.512 and 0.226 S/cm for emulsion and solution mixing. The 1.1 and 2.2 vol % graphene nanocomposites exhibited frequency-independent behavior. Inherent conductivity, extremely high aspect ratio, and nanostructure directed assembly of the graphene using PC nanospheres are the main factors for excellent electrical properties of the nanocomposites. Dynamic tensile moduli of nanocomposites increased with increasing graphene in the nanocomposite. The glass transition temperatures were decreased with increasing graphene for the emulsion series. High-resolution electron microscopy (HR-TEM) and small-angle neutron scattering (SANS) showed isolated graphene with no connectivity path for insulating nanocomposites and connected nanoparticles for the conductive nanocomposites. A stacked disk model was used to obtain the average particle radius, average number of graphene layers per stack, and stack spacing by simulation of the experimental SANS data. Morphology studies indicated the presence of well-dispersed graphene and small graphene stacking with infusion of polycarbonate within the stacks.
Flexible graphene polyimide nanocomposites (0.1-4 wt %) with superior mechanical properties over those of neat polyimide resin have been prepared by solution blending. Imide moieties were grafted to amine-functionalized graphene using a step-by-step condensation and thermal imidization method. The imide-functionalized graphene exhibited excellent compatibility with N-methyl-2-pyrrolidone. The dynamic storage moduli of the graphene polyimide nanocomposites increased linearly with increasing graphene content for both unmodified graphene and imidized graphene. Moduli of the imidized graphene nanocomposites were 25-30% higher than those of unmodified graphene nanocomposites. Both neat polyimide and polyimide nanocomposites exhibited shape memory effects with a triggering temperature of 230 °C. where addition of graphene improved the recovery rate. Addition of graphene improved thermal stability of the polyimide nanocomposites for both graphene and modified graphene.
Shape memory materials undergo physical conformation changes when exposed to an external stimulus, such as a change in temperature. Such materials have a permanent shape, but can be reshaped above a critical temperature and fixed into a temporary shape when cooled under stress to below the critical temperature. When reheated above the critical temperature (T c , also sometimes called the triggering or switching temperature), the materials revert to the permanent shape.The current innovation involves a chemically treated (sulfonated, carboxylated, phosphonated, or other polar function group), high-temperature, semicrystalline thermoplastic poly(ether ether ketone) (T g ≈140 °C, T m = 340 °C) mix containing or gan ometallic complexes (Zn ++ , Li + , or other metal, ammonium, or phosphonium salts), or hightemperature ionic liquids (e.g. hexafluorosilicate salt with 1-propyl-3-methyl imidazolium, T m = 210 °C) to form a network where dipolar or ionic interactions between the polymer and the low-molecular-weight or inorganic compound forms a complex that provides a physical crosslink. Hereafter, these compounds will be referred to as "additives." The polymer is semicrystalline, and the high-melt-point crystals provide a temporary crosslink that acts as a permanent crosslink just so long as the melting temperature is not exceeded. In this example case, the melting point is ≈340 °C, and the shape memory critical temperature is between 150 and 250 °C. PEEK is an engineering thermoplastic with a high Young's modulus, nominally 3.6 GPa.An important aspect of the invention is the control of the PEEK functionalization (in this example, the sulfonation degree), and the thermal properties (i.e. melting point) of the additive, which determines the switching temperature. Because the compound is thermoplastic, it can be formed into the "permanent" shape by conventional plastics processing operations. In addition, the compound may be covalently crosslinked after forming the permanent shape by S-PEEK by applying ionizing radiation ( γ radiation, neutrons), or by chemical crosslinking to form a covalent permanent network.With respect to other shape memory polymers, this invention is novel in that it describes the use of a thermoplastic composition that can be thermally molded or solution-cast into complex "permanent" shapes, and then reheated or redissolved and recast from solution to prepare another shape. It is also unique in that the shape memory behavior is provided by a non-polymer additive.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.