Human CD46, formerly membrane cofactor protein, binds and inactivates complement C3b and serves as a receptor for measles virus (MV), thereby protecting cells from homologous complement and sustaining systemic measles infection. Suppression of cell-mediated immunity, including down-regulation of IL-12 production, has been reported on macrophages (Mφ) by cross-linking their CD46. The intracellular events responsible for these immune responses, however, remain unknown. In this study, we found that 6- to 8-day GM-CSF-treated peripheral blood monocytes acquired the capacity to recruit protein-tyrosine phosphatase SHP-1 to their CD46 and concomitantly were able to produce IL-12 p40 and NO. These responses were induced by stimulation with mAbs F(ab′)2 against CD46 that block MV binding or by a wild-type MV strain Kohno MV strain (KO; UV treated or untreated) that was reported to induce early phase CD46 down-regulation. Direct ligation of CD46 by these reagents, but not intracellular MV replication, was required for these cellular responses. Interestingly, the KO strain failed to replicate in the 6- to 8-day GM-CSF-cultured Mφ, while other MV strains replicated to form syncytia under the same conditions. When stimulated with the KO strain, rapid and transient dissociation of SHP-1 from CD46 was observed. These and previous results provide strong evidence that CD46 serves as a signal modulatory molecule and that the properties of ligands determine suppression or activation of an innate immune system at a specific maturation stage of human Mφ.
We generated transgenic (TG) mice that constitutively express human CD46 (huCD46) and/or TLR-inducible CD150 (huCD150), which serve as receptors for measles virus (MV). These mice were used to study the spreading and pathogenicity of GFP-expressing or intact laboratory-adapted Edmonston and wild-type Ichinose (IC) strains of MV. Irrespective of the route of administration, neither type of MV was pathogenic to these TG mice. However, in ex vivo, limited replication of IC was observed in the spleen lymphocytes from huCD46/huCD150 TG and huCD150 TG, but not in huCD46 TG and non-TG mice. In huCD150-positive TG mouse cells, CD11c-positive bone marrow-derived myeloid dendritic cells (mDC) participated in MV-mediated type I IFN induction. The level and induction profile of IFN-β was higher in mDC than the profile of IFN-α. Wild-type IC induced markedly high levels of IFN-β compared with Edmonston in mDC, as opposed to human dendritic cells. We then generated huCD46/huCD150 TG mice with type I IFN receptor (IFNAR1)−/− mice. MV-bearing mDCs spreading to draining lymph nodes were clearly observed in these triple mutant mice in vivo by i.p. MV injection. Infectious lymph nodes were also detected in the double TG mice into which MV-infected CD11c-positive mDCs were i.v. transferred. This finding suggests that in the double TG mouse model mDCs once infected facilitate systemic MV spreading and infection, which depend on mDC MV permissiveness determined by the level of type I IFN generated via IFNAR1. Although these results may not simply reflect human MV infection, the huCD150/huCD46 TG mice may serve as a useful model for the analysis of MV-dependent modulation of mDC response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.