International audienceNon-natural, sequence-encoded polyphosphates were prepared using the phosphoramidite approach on a DNA synthesizer. Two phosphoramidite monomers, namely, 2-cyanoethyl (3-dimethoxytrityloxy-propyl) diisopropylphosphoramidite (0) and 2-cyanoethyl (3-dimethoxytrityloxy-2,2-dimethyl-propyl) diisopropylphosphoramidite (1), were used in this approach to form binary-coded sequences. Using 1000 A controlled pore glass as a support and a large excess of monomers at each step, it was possible to synthesize homopolymers and sequence-coded copolymers of high chain-length. For instance, monodisperse polymers containing 16, 24, 56, and 104 coded monomer units were synthesized and characterized in this work. These results indicate that highly efficient phosphoramidite steps are suitable for the synthesis of long non-natural information-containing macromolecules
Synthesis of oligonucleotide probes and control of their hybridization temperature are key aspects of polymerase chain reaction (PCR)-based detection of genetic sequences. A straightforward means to approach the last goal is to decrease the repulsion between the polyanionic probe and target strands. To this end, we have developed a versatile automated synthesis of oligonucleotide-oligospermine derivatives that gave fast access to a large variety of compounds. Plots of their hybridization temperatures T(m) vs overall charge provided a measure of the impact of interstrand phosphate repulsion (and of spermine-mediated attraction) on the main driving force of duplex formation, i.e., base pairing. It showed that stabilization brought about by excess cationic charges can be of larger absolute magnitude than interstrand repulsion, even in high salt media. Base sequence and conjugation site (3' or 5') hardly influenced the effect of spermine on T(m). In typical PCR probe conditions, the T(m) increased linearly with the number of grafted spermines (e.g., 6.2 degrees C per spermine for a decanucleotide probe). The large data set of T(m) vs number of spermines and oligonucleotide length allowed us to empirically derive a simple mathematical relation that is accurately predicting the T(m) of any oligonucleotide-oligospermine derivative. Zip nucleic acids (ZNA) are thus providing an interesting alternative to locked nucleic acids (LNA) or minor groove binders (MGB) for raising the stability of 8-12-mer oligonucleotides up to ca. 70 degrees C, the level required for quantitative PCR experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.