SummaryJasmonic acid (JA) and methyl jasmonate (MeJA), collectively termed jasmonates, are ubiquitous plant signalling compounds. Several types of stress conditions, such as wounding and pathogen infection, cause endogenous JA accumulation and the expression of jasmonate-responsive genes. Although jasmonates are important signalling components for the stress response in plants, the mechanism by which jasmonate signalling contributes to stress tolerance has not been clearly defined. A comprehensive analysis of jasmonateregulated metabolic pathways in Arabidopsis was performed using cDNA macroarrays containing 13516 expressed sequence tags (ESTs) covering 8384 loci. The results showed that jasmonates activate the coordinated gene expression of factors involved in nine metabolic pathways belonging to two functionally related groups: (i) ascorbate and glutathione metabolic pathways, which are important in defence responses to oxidative stress, and (ii) biosynthesis of indole glucosinolate, which is a defence compound occurring in the Brassicaceae family. We confirmed that JA induces the accumulation of ascorbate, glutathione and cysteine and increases the activity of dehydroascorbate reductase, an enzyme in the ascorbate recycling pathway. These antioxidant metabolic pathways are known to be activated under oxidative stress conditions. Ozone (O 3 ) exposure, a representative oxidative stress, is known to cause activation of antioxidant metabolism. We showed that O 3 exposure caused the induction of several genes involved in antioxidant metabolism in the wild type. However, in jasmonate-deficient Arabidopsis 12-oxophytodienoate reductase 3 (opr 3) mutants, the induction of antioxidant genes was abolished. Compared with the wild type, opr3 mutants were more sensitive to O 3 exposure. These results suggest that the coordinated activation of the metabolic pathways mediated by jasmonates provides resistance to environmental stresses.
In the tetrapyrrole biosynthetic pathway, isoforms of glutamyl-tRNA reductase (HEMA2) and ferrochelatase1 (FC1) are mainly expressed in nonphotosynthetic tissues. Here, using promoter-b-glucuronidase constructs, we showed that the expressions of Arabidopsis (Arabidopsis thaliana) HEMA2 (AtHEMA2) and FC1 (AtFC1) were induced in photosynthetic tissues by oxidative stresses such as wounding. Transcript levels and b-glucronidase activity were rapidly induced within 30 min, specifically in the wound area in a jasmonate-independent manner. Transcriptome analysis of wound-specific early inducible genes showed that AtHEMA2 and AtFC1 were coinduced with hemoproteins outside plastids, which are related to defense responses. Ozone fumigation or reagents generating reactive oxygen species induced the expression of both genes in photosynthetic tissues, suggesting that reactive oxygen species is involved in the induction. Since cycloheximide or puromycin induced the expression of both genes, inhibition of cytosolic protein synthesis is involved in the induction of these genes in photosynthetic tissues. The physiological functions of AtHEMA2 and AtFC1 were investigated using insertional knockout mutants of each gene. Heme contents of the roots of both mutants were about half of that of the respective wild types. In wild-type plants, heme contents were increased by ozone exposure. In both mutants, reduction of the ozone-induced increase in heme content was observed. These results suggest the existence of the tetrapyrrole biosynthetic pathway controlled by AtHEMA2 and AtFC1, which normally functions for heme biosynthesis in nonphotosynthetic tissues, but is induced in photosynthetic tissues under oxidative conditions to supply heme for defensive hemoproteins outside plastids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.