Nonphotic entrainment of an overt sleep-wake rhythm and a circadian pacemaker-driving temperature/melatonin rhythm suggests existence of feedback mechanisms in the human circadian system. In this study, the authors constructed a phase dynamics model that consisted of two oscillators driving temperature/melatonin and sleep-wake rhythms, and an additional oscillator generating an overt sleep-wake rhythm. The feedback mechanism was implemented by modifying couplings between the constituent oscillators according to the history of correlations between them. The model successfully simulated the behavior of human circadian rhythms in response to forced rest-activity schedules under free-run situations: the sleep-wake rhythm is reentrained with the circadian pacemaker after release from the schedule, there is a critical period for the schedule to fully entrain the sleep-wake rhythm, and the forced rest-activity schedule can entrain the circadian pacemaker with the aid of exercise. The behavior of human circadian rhythms was reproduced with variations in only a few model parameters. Because conventional models are unable to reproduce the experimental results concerned here, it was suggested that the feedback mechanisms included in this model underlie nonphotic entrainment of human circadian rhythms.
Occurrence of abnormal transcripts of the FHIT (fragile histidine triad) gene has been reported in various types of cancer. On the other hand, aberrant transcripts are sometimes found in non-neoplastic tissues, so the relationship between the presence of abnormal transcripts of the FHIT gene and cancer pathogenesis is controversial. We investigated alterations in the FHIT locus, detected by nested reverse transcription-polymerase chain reaction and/or allelic status, in 88 primary lung cancers and normal lung tissues, and 22 normal lung tissues with metastatic lung cancer as a control. The frequencies of abnormal transcripts were 59% in lung cancer, 35% in paired normal lung, and 64% in normal control lung; the difference in frequencies between lung cancer and paired normal lung was significant, while that between lung cancer and normal control lung was not. Sequence analysis revealed that there were no cancer-specific abnormal transcripts entirely missing two or more exons, nor were the abnormal transcripts of lung cancer identical with those of paired normal lung in the same individual. Furthermore, we found no correlation between loss of heterozygosity in the FHIT locus and occurrence of abnormal FHIT transcripts. These results suggest that the presence of abnormal FHIT transcripts, in terms of their frequency and variety, is not cancer-specific in lung carcinogenesis, and the abnormality may be mainly due to abnormal splicing and processing of the transcripts. To estimate the precise function of the FHIT gene, further study of the FHIT protein in lung carcinogenesis is needed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.