Raman spectra of liquid 1-ethyl-3-methylimidazolium (EMI+) salts, EMI(+)BF4-, EMI(+)PF6-, EMI(+)CF3SO3-, and EMI(+)N(CF3SO2)2-, were measured over the frequency range 200-1600 cm(-1). In the range 200-500 cm(-1), we found five bands originating from the EMI+ ion at 241, 297, 387, 430, and 448 cm(-1). However, the 448 cm(-1) band could hardly be reproduced by theoretical calculations in terms of a given EMI+ conformer, implying that the band originates from another conformer. This is expected because the EMI+ involves an ethyl group bound to the N atom of the imidazolium ring, and the ethyl group can rotate along the C-N bond to yield conformers. The torsion energy for the rotation was then theoretically calculated. Two local minima with an energy difference of ca. 2 kJ mol(-1) were found, suggesting that two conformers are present in equilibrium. Full geometry optimizations followed by normal frequency analyses indicate that the two conformers are those with planar and nonplanar ethyl groups against the imidazolium ring plane, and the nonplanar conformer is favorable. It elucidates that bands at 241, 297, 387, and 430 cm(-1) mainly originate from the nonplanar conformer, whereas the 448 cm(-1) band does originate from the planar conformer. Indeed, the enthalpy for conformational change from nonplanar to planar EMI+ experimentally obtained by analyzing band intensities of the conformers at varying temperatures is practically the same as that evaluated by theoretical calculations. We thus conclude that the EMI+ ion exists as either a nonplanar or planar conformer in equilibrium in its liquid salts.
We investigated the swelling behaviors of poly(vinyl alcohol) (PVA) films deposited on Si wafers with water vapor, which is a good solvent for PVA for elucidating structural and dynamical heterogeneities in the film thickness direction. Using deuterated water vapor, structural and dynamical differences in the thickness direction can be detected easily as different degrees of swelling in the thickness direction by neutron reflectivity. Consequently, the PVA film with a degree of saponification exceeding 98 mol % exhibits a three-layered structure in the thickness direction. It is considered that an adsorption layer consisting of molecular chains that are strongly adsorbed onto the solid substrate is formed at the interface with the substrate, which is not swollen with water vapor compared with the bulk-like layer above it. The adsorption layer is considered to exhibit significantly slower dynamics than the bulk. Furthermore, a surface layer that swells excessively compared with the underneath bulk-like layer is found. This excess swelling of the surface layer may be related to a higher mobility of the molecular chains or lower crystallinity at the surface region compared to the underneath bulk-like layer. Meanwhile, for the PVA film with a much lower degree of saponification, a thin layer with a slightly lower degree of swelling than the bulk-like layer above it can be detected at the interface between the film and substrate only under a high humidity condition. This layer is considered to be the adsorption layer composed of molecular chains loosely adsorbed onto the Si substrate.
We report the structural heterogeneity of recrystallized linear low-density polyethylene (LLDPE) films (25, 50, and 100 nm in thickness) in the direction normal to the surface, based on in situ grazing incidence small-angle X-ray scattering (GISAXS) and X-ray diffraction (GID) measurements. The GID results have clarified the presence of the edge-on lamellae at the surfaces and in the interior of the LLDPE films prepared on Si substrates as thin as 25 nm in thickness. However, the degree of the crystallinity for the 25 nm thick film was almost half of those for the 50 and 100 nm thick films, while the melting temperature (T m ) for all the films remained unchanged relative to the bulk (T m = 117 °C). Moreover, the GISAXS results for the 25 nm thick film indicate the structural heterogeneity in the direction normal to the surface: (i) At the polymer/air interface, the presence of the disordered edge-on lamellae which lack well-defined long periods even at T ≪ T m ; (ii) At the polymer/substrate interface, the persistence of a substrate-bound edge-on lamellar layer even at T ≫ T m ; (iii) In between the two interfacial layers, the existence of the well-ordered edge-on lamellae with the long periods. These heterogeneous structures can be explained as a consequence of the nucleation initiated at the topmost surface of the substrate-bound lamellar layer.
The effects of CO2 annealing on the melting and subsequent melt crystallization processes of spin-cast poly(ethylene oxide) (PEO) ultrathin films (20-100 nm in thickness) prepared on Si substrates were investigated. By using in situ neutron reflectivity, we found that all the PEO thin films show melting at a pressure as low as P = 2.9 MPa and at T = 48 °C which is below the bulk melting temperature (Tm). The films were then subjected to quick depressurization to atmospheric pressure, resulting in the non-equilibrium swollen state, and the melt crystallization (and/or dewetting) process was carried out in air via subsequent annealing at given temperatures below Tm. Detailed structural characterization using grazing incidence X-ray diffraction, atomic force microscopy, and polarized optical microscopy revealed two unique aspects of the CO2-treated PEO films: (i) a flat-on lamellar orientation, where the molecular chains stand normal to the film surface, is formed within the entire film regardless of the original film thickness and the annealing temperature; and (ii) the dewetting kinetics for the 20 nm thick film is much slower than that for the thicker films. The key to these phenomena is the formation of irreversibly adsorbed layers on the substrates during the CO2 annealing: the limited plasticization effect of CO2 at the polymer-substrate interface promotes polymer adsorption rather than melting. Here we explain the mechanisms of the melt crystallization and dewetting processes where the adsorbed layers play vital roles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.