Using optical trapping and fluorescence imaging techniques, we measured the step size and stiffness of single skeletal myosins interacting with actin filaments and arranged on myosin-rod cofilaments that approximate myosin mechanics during muscle contraction. Stiffness is dramatically lower for negatively compared to positively strained myosins, consistent with buckling of myosin's subfragment 2 rod domain. Low stiffness minimizes drag of negatively strained myosins during contraction at loaded conditions. Myosin's elastic portion is stretched during active force generation, reducing apparent step size with increasing load, even though the working stroke is approximately constant at about 8 nanometers. Taking account of the nonlinear nature of myosin elasticity is essential to relate myosin's internal structural changes to physiological force generation and filament sliding.
In contrast to processive molecular motors, skeletal myosins form a large motor ensemble for contraction of muscles against high loads. Despite numerous information on the molecular properties of skeletal myosin, its ensemble effects on collective force generation have not been rigorously clarified. Here we show 4 nm stepwise actin displacements generated by synthetic myofilaments beyond a load of 30 pN, implying that steps cannot be driven exclusively by single myosins, but potentially by coordinated force generations among multiple myosins. The simulation model shows that stepwise actin displacements are primarily caused by coordinated force generation among myosin molecules. Moreover, the probability of coordinated force generation can be enhanced against high loads by utilizing three factors: strain-dependent kinetics between force-generating states; multiple power stroke steps; and high ATP concentrations. Compared with other molecular motors, our findings reveal how the properties of skeletal myosin are tuned to perform cooperative force generation for efficient muscle contraction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.