The mixotrophic P. japonica undergoes changes in mycorrhizal symbionts and carbon nutrition according to light availability. Our results suggest that during Pyroleae evolution, a tendency to increased heterotrophy emerged in the Pyrola/Orthilia clade.
Electron donor−acceptor (EDA) complexes can controllably generate radicals under mild conditions through selective photoexcitation events. However, unproductive reactivity from fast deactivation of the photoexcited complexes through back electron transfer has slowed the development of EDA complexes in synthetic methodology. Here, we disclose the study of EDA complexes derived from 2-methoxynaphthalene donor and acylated ethyl isonicotinate N-oxide acceptor that undergo a fast N−O bond fragmentation event upon photoexcitation. This reaction design not only overcomes the limitations of back electron transfer but also enables regeneration of the donor species, representing a rare example of EDA photochemistry in a catalytic regime. The synthetic utility is demonstrated through visible light-driven radical trifluoromethylation and Minisci alkylation reactions. The scalability of the EDA complex-promoted reaction is evidenced by the successful multigram-scale trifluoromethylation of methyl N-Boc pyrrole-2-carboxylate in a continuous flow manifold.
Electrochemical dimerization reactivity has been studied for 5-substituted uracils (5XU) including thymine (1a: X = Me) and 5-halouracil derivatives (1b: X = F; 1c: X = Cl; 1d: X = Br; 1e: X = I). Upon galvanostatic electrolysis of Ar-saturated aqueous solution 1a underwent anodic oxidation to produce N(1)-C(5')- and N(1)-C(6')-linked dimer hydrates, 1-(6'-hydroxy-5',6'-dihydrothymin-5'-yl)thymine (5a) and 1-(5'-hydroxy-5',6'-dihydrothymin-6'-yl)thymine (6a), as the major products. These N-C-linked dimerizations were accompanied by the formation of novel stereoisomeric C(5)-C(5')-linked dimers (meso isomer: 13a[meso]; racemic isomer: 13a[rac]) with a condensed tetrahydrofuran ring skeleton. Similar electrolyses of 5-fluorouracil (1b) and 5-chlorouracil (1c) also afforded the corresponding N(1)-C(5')-linked dimer hydrates, 1-(5'-fluoro-6'-hydroxy-5',6'-dihydrouracil-5'-yl)-5-fluorouracil (5b) and 1-(5'-chloro-6'-hydroxy-5',6'-dihydrouracil-5'-yl)-5-chlorouracil (5c), respectively, while resulting in neither N(1)-C(6')-linked dimer analogues nor C(5)-C(5')-linked dimers, unlike the reactivity of 1a. In contrast to 1a-c, no dimeric products were obtained from 5-bromouracil (1d) and 5-iodouracil (1e). The present electrochemical method was applicable to the cross-dimerization into N(1)-C(5')-linked heterodimer hydrates composed of binary 5-substituted uracils that occurred in competition with the formation of homodimer hydrates. A mechanism of the N(1)-C(5')-linked dimerization of 1a-c has been proposed, by which allyl-type radical intermediates with limiting mesomeric forms of N(1)-centered and C(5)-centered pyrimidine radicals (2a-c [N(1)]/2a-c [C(5)]) are generated via anodic one-electron oxidation and subsequent deprotonation at N(1) and undergo a head-to-tail coupling.
A series of 5-fluoro-1-(2'-oxocycloalkyl)uracils (3-11) that are potentially novel radiation-activated prodrugs for the radiotherapy of hypoxic tumor cells have been synthesized to evaluate a relationship between the molecular structure and the reactivity of one-electron reductive release of antitumor 5-fluorouracil (1) in anoxic aqueous solution. All the compounds 3-11 bearing the 2'-oxo group were one-electron reduced by hydrated electrons (eaq-) and thereby underwent C(1')-N(1) bond dissociation to release 5-fluorouracil 1 in 47-96% yields upon radiolysis of anoxic aqueous solution, while control compounds (12, 13) without the 2'-oxo substituent had no reactivity toward such a reductive C(1')-N(1) bond dissociation. The decomposition of 2-oxo compounds in the radiolytic one-electron reduction was more enhanced, as the one-electron reduction potential measured by cyclic voltammetry in N,N-dimethylformamide became more positive. The efficiency of 5-fluorouracil release was strongly dependent on the structural flexibility of 2-oxo compounds. X-ray crystallographic studies of representative compounds revealed that the C(1')-N(1) bond possesses normal geometry and bond length in the ground state. MO calculations by the AM1 method demonstrated that the LUMO is primarily localized at the pi* orbital of C(5)-C(6) double bond of the 5-fluorouracil moiety, and that the LUMO + 1 is delocalized between the pi* orbital of 2'-oxo substituent and the sigma* orbital of adjacent C(1')-N(1) bond. The one-electron reductive release of 5-fluorouracil 1 in anoxic aqueous solution was presumed to occur from the LUMO + 1 of radical anion intermediates possessing a partial mixing of the antibonding C(2')=O pi* and C(1')-N(1) sigma* MO's, that may be facilitated by a dynamic conformational change to achieve higher degree of (pi* + sigma*) MO mixing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.