Ataxia-ocular apraxia 2 (AOA2) was recently identified as a new autosomal recessive ataxia. We have now identified causative mutations in 15 families, which allows us to clinically define this entity by onset between 10 and 22 years, cerebellar atrophy, axonal sensorimotor neuropathy, oculomotor apraxia and elevated alpha-fetoprotein (AFP). Ten of the fifteen mutations cause premature termination of a large DEAxQ-box helicase, the human ortholog of yeast Sen1p, involved in RNA maturation and termination.We previously identified a 16-cM interval on chromosome 9q34 associated with an autosomal recessive adolescent-onset cerebellar ataxia segregating in two families 1,2 , one with additional oculomotor apraxia 1 and the second with associated elevated serum AFP, immunoglobulins and creatine kinase levels but no oculomotor apraxia 2,3 . We identified nine additional families with ataxia linked to 9q34 by homozygosity mapping (Supplementary Methods online). As most affected individuals had both oculomotor apraxia and elevated AFP levels we assumed that they were affected by the same disorder, which we named AOA2 (OMIM 606002). We identified distal and proximal recombinations in families with two affected individuals (Fig. 1a), localizing the defective gene underlying AOA2 to a 1.1-Mb interval containing 13 genes ( Fig. 1b) and three groups of overlapping spliced expressed-sequence tags, which we analyzed for nucleotide changes but found no mutations. We also found that the unspliced mRNA AK024331 overlaps with the KIAA0625 cDNA and is part of a larger transcript overlapping with additional exons on the 5′ side. We obtained an open reading frame of 8,031 nucleotides and 24 exons (Fig. 1c), of which exon 8 was 4,177 nucleotides long. We confirmed the prediction and size of the transcript by long-range RT-PCR experiments spanning the putative exon 1 and 3′ untranslated region in human fibroblast and lymphoblastoid cell lines (data not shown) and by hybridization of a human northern blot with a probe spanning putative exons 8-24 (Fig. 1d). We also identified an alternative transcript that is 2.4 kb longer, resulting from a second polyadenylation site (human mRNAs AB014525 and AK022902; Fig. 1d).We sequenced exons 1-18 and flanking intronic sequences in families with ataxia linked to this region and in additional individuals with either AOA or ataxia with elevated AFP levels and found 15 different disease-associated mutations in 15 families ( Table 1). Ten of these mutations, including mutations in the two families in whom we first identified AOA2, cause truncation of the protein, indicating that this is the gene underlying AOA2. We found the nonsense mutation R1363X in three unrelated families originating from Portugal, Cabo Verde (once a Portuguese colony) and Spain, suggestive of an Iberian founder event, although recurrent C→T changes on this CpG dinucleotide cannot be formally excluded. Absence of the five missense mutations in 150 unrelated and unaffected individuals sharing the same ethnic origin as the affected in...
The newly recognized ataxia-ocular apraxia 1 (AOA1; MIM 208920) is the most frequent cause of autosomal recessive ataxia in Japan and is second only to Friedreich ataxia in Portugal. It shares several neurological features with ataxia-telangiectasia, including early onset ataxia, oculomotor apraxia and cerebellar atrophy, but does not share its extraneurological features (immune deficiency, chromosomal instability and hypersensitivity to X-rays). AOA1 is also characterized by axonal motor neuropathy and the later decrease of serum albumin levels and elevation of total cholesterol. We have identified the gene causing AOA1 and the major Portuguese and Japanese mutations. This gene encodes a new, ubiquitously expressed protein that we named aprataxin. This protein is composed of three domains that share distant homology with the amino-terminal domain of polynucleotide kinase 3'- phosphatase (PNKP), with histidine-triad (HIT) proteins and with DNA-binding C2H2 zinc-finger proteins, respectively. PNKP is involved in DNA single-strand break repair (SSBR) following exposure to ionizing radiation and reactive oxygen species. Fragile-HIT proteins (FHIT) cleave diadenosine tetraphosphate, which is potentially produced during activation of the SSBR complex. The results suggest that aprataxin is a nuclear protein with a role in DNA repair reminiscent of the function of the protein defective in ataxia-telangiectasia, but that would cause a phenotype restricted to neurological signs when mutant.
To clarify the alterations of tau, amyloid beta protein (A beta) 1-40 and A beta1-42(43) in the cerebrospinal fluid (CSF) that accompany normal aging and the progression of Alzheimer's disease (AD), CSF samples of 93 AD patients, 32 longitudinal subjects among these 93 AD patients, 33 patients with non-AD dementia, 56 with other neurological diseases, and 54 normal control subjects from three independent institutes were analyzed by sensitive enzyme-linked immunosorbent assays. Although the tau levels increased with aging, a significant elevation of tau and a correlation between the tau levels and the clinical progression were observed in the AD patients. A significant decrease of the A beta1-42(43) levels and a significant increase of the ratio of A beta1-40 to A beta1-42(43) were observed in the AD patients. The longitudinal AD study showed continuous low A beta1-42(43) levels and an increase of the ratio of A beta1-40 to A beta1-42(43) before the onset of AD. These findings suggest that CSF tau may increase with the clinical progression of dementia and that the alteration of the CSF level of A beta1-42(43) and the ratio of A beta1-40 to A beta1-42(43) may start at early stages in AD. The assays of CSF tau, A beta1-40, and A beta1-42(43) provided efficient diagnostic sensitivity (71%) and specificity (83%) by using the production of tau levels and the ratio of A beta1-40 to A beta1-42(43), and an improvement in sensitivity (to 91%) was obtained in the longitudinal evaluation.
Ataxia with oculomotor apraxia type 2 (AOA2) is an autosomal recessive disease due to mutations in the senataxin gene, causing progressive cerebellar ataxia with peripheral neuropathy, cerebellar atrophy, occasional oculomotor apraxia and elevated alpha-feto-protein (AFP) serum level. We compiled a series of 67 previously reported and 58 novel ataxic patients who underwent senataxin gene sequencing because of suspected AOA2. An AOA2 diagnosis was established for 90 patients, originating from 15 countries worldwide, and 25 new senataxin gene mutations were found. In patients with AOA2, median AFP serum level was 31.0 microg/l at diagnosis, which was higher than the median AFP level of AOA2 negative patients: 13.8 microg/l, P = 0.0004; itself higher than the normal level (3.4 microg/l, range from 0.5 to 17.2 microg/l) because elevated AFP was one of the possible selection criteria. Polyneuropathy was found in 97.5% of AOA2 patients, cerebellar atrophy in 96%, occasional oculomotor apraxia in 51%, pyramidal signs in 20.5%, head tremor in 14%, dystonia in 13.5%, strabismus in 12.3% and chorea in 9.5%. No patient was lacking both peripheral neuropathy and cerebellar atrophy. The age at onset and presence of occasional oculomotor apraxia were negatively correlated to the progression rate of the disease (P = 0.03 and P = 0.009, respectively), whereas strabismus was positively correlated to the progression rate (P = 0.03). An increased AFP level as well as cerebellar atrophy seem to be stable in the course of the disease and to occur mostly at or before the onset of the disease. One of the two patients with a normal AFP level at diagnosis had high AFP levels 4 years later, while the other had borderline levels. The probability of missing AOA2 diagnosis, in case of sequencing senataxin gene only in non-Friedreich ataxia non-ataxia-telangiectasia ataxic patients with AFP level > or =7 microg/l, is 0.23% and the probability for a non-Friedreich ataxia non-ataxia-telangiectasia ataxic patient to be affected with AOA2 with AFP levels > or =7 microg/l is 46%. Therefore, selection of patients with an AFP level above 7 microg/l for senataxin gene sequencing is a good strategy for AOA2 diagnosis. Pyramidal signs and dystonia were more frequent and disease was less severe with missense mutations in the helicase domain of senataxin gene than with missense mutations out of helicase domain and deletion and nonsense mutations (P = 0.001, P = 0.008 and P = 0.01, respectively). The lack of pyramidal signs in most patients may be explained by masking due to severe motor neuropathy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.