A methanol extract from the ‰ower heads of Chrysanthemum morifolium showed a suppressive eŠect on umu gene expression of the SOS response in Salmonella typhimurium TA1535 W pSK1002 against the mutagen 2-(2-furyl)-3-(5-nitro-2-furyl)acrylamide (furylfuramide). The methanol extract was re-extracted with hexane, chloroform, ethyl acetate, butanol, and water. The ethyl acetate fraction showed a suppressive eŠect. Suppressive compounds in the ethyl acetate fraction were isolated by silica gel column chromatography and identiˆed as the ‰avonoids acacetin (1), apigenin (2), luteolin (3), and quercetin (4) by EI-MS, IR, and 1 H and 13 C NMR spectroscopy. Compounds 1-4 suppressed the furylfuramide-induced SOS response in the umu test. Compounds 1-4 suppressed 60.2, 75.7, 90.0, and 66.6z of the SOS-inducing activity at a concentration of 0.70 mmol W ml. The ID 50 (50z inhibitory dose) values of 1-4 were 0.62, 0.55, 0.44, and 0.59 mmol W ml. These compounds had the suppressive eŠects on umu gene expression of the SOS response against other mutagens, 4-nitroquinolin 1-oxide (4NQO) and N-methyl-N?-nitro-N-nitrosoguanidine (MNNG), which do not require liver-metabolizing enzymes. These compounds also showed the suppression of SOS-inducing activity against the other mutagens a‰atoxin B 1 (AfB 1 ) and 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1), which require liver-metabolizing enzymes, and UV irradiation. In addition to the antimutagenic activities of these compounds against furylfuramide, Trp-P-1 and activated Trp-P-1 were also assayed by the Ames test using S. typhimurium TA100.
Inhibition of acetylcholinesterase (AChE) activity by 17 kinds of monoterpenoids (hydrocarbons, alcohols, and ketones) with p-menthane skeletons was studied. Inhibition of AChE was measured by the colorimetric method. The terpene ketones showed stronger inhibition than the terpene alcohols. The terpene hydrocarbon compounds showed identical inhibitory activity with the terpene alcohols, but α-terpinene and (+)-p-menth-1-ene were equally strong inhibitors as the terpene ketones. Monoterpenoids used in this study were found to be competitive inhibitors. Keywords: Acetylcholinesterase; monoterpenoids; p-menthane skeleton; inhibition of enzyme activity; competitive inhibitor
Inhibition of acetylcholinesterase (AChE) activity by 17 kinds of bicyclic monoterpenoids was investigated. Bicyclic monoterpenoids are contained in many kinds of essential oils. Inhibition of AChE was measured according to the colorimetric method. 3.1.1 and 4.1.0 bicyclic hydrocarbons with allylic methyl group showed strong inhibition. (+)- and (-)-alpha-pinene and (+)-3-carene were potent inhibitors of AChE. 3.1.1 and 2.2.1 bicyclic alcohols and ketones showed weak inhibition. 3.1.1 and 4.1.0 bicyclic hydrocarbons with allylic methyl group were found to be uncompetitive inhibitors.
Volatile organic compounds (VOC) were extracted and identified from plant growth-promoting fungi (PGPF), Phoma sp., Cladosporium sp. and Ampelomyces sp., using gas chromatography–mass spectrometry (GC-MS). Among the three VOC extracted, two VOC blends (emitted from Ampelomyces sp. and Cladosporium sp.) significantly reduced disease severity in Arabidopsis plants against Pseudomonas syringae pv. tomato DC3000 (Pst). Subsequently, m-cresol and methyl benzoate (MeBA) were identified as major active volatile compounds from Ampelomyces sp. and Cladosporium sp., respectively, and found to elicit induced systemic resistance (ISR) against the pathogen. Molecular signaling for disease suppression by the VOC were investigated by treating different mutants and transgenic Arabidopsis plants impaired in salicylic acid (SA) or Jasmonic acid (JA)/ethylene (ET) signaling pathways with m-cresol and MeBA followed by challenge inoculation with Pst. Results show that the level of protection was significantly lower when JA/ET-impaired mutants were treated with MeBA, and in SA-, and JA/ET-disrupted mutants after m-cresol treatment, indicating the involvement of these signal transduction pathways in the ISR primed by the volatiles. Analysis of defense-related genes by real-time qRT-PCR showed that both the SA-and JA-signaling pathways combine in the m-cresol signaling of ISR, whereas MeBA is mainly involved in the JA-signaling pathway with partial recruitment of SA-signals. The ET-signaling pathway was not employed in ISR by the volatiles. Therefore, this study identified two novel volatile components capable of eliciting ISR that may be promising candidates in biological control strategy to protect plants from diseases.
Phenylpropanoids that possess antimutagenic activity were isolated from the buds of clove (Syzygium aromaticum). The isolated compounds suppressed the expression of the umu gene following the induction of SOS response in the Salmonella typhimurium TA1535/pSK1002 that have been treated with various mutagens. The suppressive compounds were mainly localized in the ethyl acetate extract fraction of the processed clove. This ethyl acetate fraction was further fractionated by silica gel column chromatography, which resulted in the purification and subsequent identification of the suppressive compounds. Electron impact mass spectrometry, IR, and (1)H and (13)C NMR spectroscopy were then used to delineate the structures of the compounds that confer the observed antimutagenic activity. The secondary suppressive compounds were identified as dehydrodieugenol (1) and trans-coniferyl aldehyde (2). When using 2-(2-furyl)-3-(5-nitro-2-furyl)acrylamide (furylfuramide) as the mutagen, compound 1 suppressed 58% of the umu gene expression as compared to the controls at a concentration of 0.60 micromol/mL, with an ID(50) (50% inhibitory dose) value of 0.48 micromol/mL, and compound 2 suppressed 63% of the umu gene expression as compared to the controls at a concentration of 1.20 micromol/mL, with an ID(50) value of 0.76 micromol/mL. Additionally, compounds 1 and 2 were tested for their ability to suppress the mutagenic activity of other well-known mutagens such as 4-nitroquinolin 1-oxide (4NQO) and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), which do not require liver metabolizing enzymes, and aflatoxin B(1) (AfB(1)) and 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1), which require liver metabolizing enzymes and activated Trp-P-1 and UV irradiation. Compounds 1 and 2 showed dramatic reductions in their mutagenic potential of all of the aforementioned chemicals or treatment. For the search of the structure-activity relationship, the derivatives of 1 and 2 (1a and 2a-c) were also assayed with all mutagens. Finally, the antimutagenic activities of compounds 1, 1a, 2, and 2a-c against furylfuramide, Trp-P-1, and activated Trp-P-1 were assayed by the Ames test using the S. typhimurium TA100 strain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.