PurposeWe aim to provide an overview of the conventional single photon emission computed tomography (SPECT) and emerging positron emission tomography (PET) catecholamine analogue tracers for assessing myocardial nerve integrity, in particular focusing on 18F-labeled tracers.ResultsIncreasingly, the cardiac sympathetic nervous system (SNS) is being studied by non-invasive molecular imaging approaches. Forming the backbone of myocardial SNS imaging, the norepinephrine (NE) transporter at the sympathetic nerve terminal plays a crucial role for visualizing denervated myocardium: in particular, the single-photon-emitting NE analogue 123I-meta-Iodobenzylguanidine (123I-mIBG) has demonstrated favorable results in the identification of patients at a high risk for cardiac death. However, cardiac neuronal PET agents offer several advantages including improved spatio-temporal resolution and intrinsic quantifiability. Compared to their 11C-labeled counterparts with a short half-life (20.4 min), novel 18F-labeled PET imaging agents to assess myocardial nerve integrity have the potential to revolutionize the field of SNS molecular imaging. The longer half-life of 18F (109.8 min) allows for more flexibility in the study design and delivery from central cyclotron facilities to smaller hospitals may lead to further cost reduction. A great deal of progress has been made by the first in-human studies of such 18F-labeled SNS imaging agents. Moreover, dedicated animal platforms open avenues for further insights into the handling of radiolabeled catecholamine analogues at the sympathetic nerve terminal.Conclusions18F-labeled imaging agents demonstrate key properties for mapping cardiac sympathetic nerve integrity and might outperform current SPECT-based or 11C-labeled tracers in the long run.
Precise regional quantitative assessment of renal function is limited with conventional Tc-labeled renal radiotracers. A recent study reported that the PET radiotracer 2-deoxy-2-F-fluorosorbitol (F-FDS) has ideal pharmacokinetics for functional renal imaging. Furthermore, F-FDS is available via simple reduction from routinely usedF-FDG. We aimed to further investigate the potential of F-FDS PET as a functional renal imaging agent using rat models of kidney disease. Two different rat models of renal impairment were investigated: induction of acute renal failure by intramuscular administration of glycerol in the hind legs, and induction of unilateral ureteral obstruction by ligation of the left ureter. At 24 h after these procedures, dynamic 30-min F-FDS PET data were acquired using a dedicated small-animal PET system. UrineF-FDS radioactivity 30 min after radiotracer injection was measured together with coinjected Tc-diethylenetriaminepentaacetic acid urine activity. Dynamic PET imaging demonstrated rapid F-FDS accumulation in the renal cortex and rapid radiotracer excretion via the kidneys in healthy control rats. On the other hand, significantly delayed renal radiotracer uptake (continuous slow uptake) was observed in acute renal failure rats and unilateral ureteral obstruction kidneys. Measured urine radiotracer concentrations ofF-FDS and Tc-diethylenetriaminepentaacetic acid correlated well with each other ( = 0.84, < 0.05). F-FDS PET demonstrated favorable kinetics for functional renal imaging in rat models of kidney diseases.F-FDS PET imaging, with its advantages of high spatiotemporal resolution and simple tracer production, could potentially complement or replace conventional renal scintigraphy in select cases and significantly improve the diagnostic performance of renal functional imaging.
Background18F-N-[3-bromo-4-(3-fluoro-propoxy)-benzyl]-guanidine (18F-LMI1195) is a new class of PET tracer designed for sympathetic nervous imaging of the heart. The favorable image quality with high and specific neural uptake has been previously demonstrated in animals and humans, but intracellular behavior is not yet fully understood. The aim of the present study is to verify whether it is taken up in storage vesicles and released in company with vesicle turnover.ResultsBoth vesicle-rich (PC12) and vesicle-poor (SK-N-SH) norepinephrine-expressing cell lines were used for in vitro tracer uptake studies. After 2 h of 18F-LMI1195 preloading into both cell lines, effects of stimulants for storage vesicle turnover (high concentration KCl (100 mM) or reserpine treatment) were measured at 10, 20, and 30 min. 131I-meta-iodobenzylguanidine (131I-MIBG) served as a reference. Both high concentration KCl and reserpine enhanced 18F-LMI1195 washout from PC12 cells, while tracer retention remained stable in the SK-N-SH cells. After 30 min of treatment, 18F-LMI1195 releasing index (percentage of tracer released from cells) from vesicle-rich PC12 cells achieved significant differences compared to cells without treatment condition. In contrast, such effect could not be observed using vesicle-poor SK-N-SH cell lines. Similar tracer kinetics after KCl or reserpine treatment were also observed using 131I-MIBG. In case of KCl exposure, Ca2+-free buffer with the calcium chelator, ethylenediaminetetracetic acid (EDTA), could suppress the tracer washout from PC12 cells. This finding is consistent with the tracer release being mediated by Ca2+ influx resulting from membrane depolarization.ConclusionsAnalogous to 131I-MIBG, the current in vitro tracer uptake study confirmed that 18F-LMI1195 is also stored in vesicles in PC12 cells and released along with vesicle turnover. Understanding the basic kinetics of 18F-LMI1195 at a subcellular level is important for the design of clinical imaging protocols and imaging interpretation.Electronic supplementary materialThe online version of this article (10.1186/s13550-018-0365-9) contains supplementary material, which is available to authorized users.
Renin–angiotensin system (RAS) plays an important role in the regulation of blood pressure and hormonal balance. Using positron emission tomography (PET) technology, it is possible to monitor the physiological and pathological distribution of angiotensin II type 1 receptors (AT1), which reflects the functionality of RAS. A new 18F-labeled PET tracer derived from the clinically used AT1 antagonist valsartan showing the least possible chemical alteration from the valsartan structure has been designed and synthesized with several strategies, which can be applied for the syntheses of further derivatives. Radioligand binding study showed that the cold reference FV45 (Ki 14.6 nM) has almost equivalent binding affinity as its lead valsartan (Ki 11.8 nM) and angiotensin II (Ki 1.7 nM). Successful radiolabeling of FV45 in a one-pot radiofluorination followed by the deprotection procedure with 21.8 ± 8.5% radiochemical yield and >99% radiochemical purity (n = 5) enabled a distribution study in rats and opened a path to straightforward large-scale production. A fast and clear kidney uptake could be observed, and this renal uptake could be selectively blocked by pretreatment with AT1-selective antagonist valsartan. Overall, as the first 18F-labeled PET tracer based on a derivation from clinically used drug valsartan with almost identical chemical structure, [18F]FV45 will be a new tool for assessing the RAS function by visualizing AT1 receptor distributions and providing further information regarding cardiovascular system malfunction as well as possible applications in inflammation research and cancer diagnosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.