Oxygen deprivation leads to the accumulation of misfolded proteins in the endoplasmic reticulum (ER), causing ER stress. Under conditions of ER stress, inhibition of protein synthesis and up-regulation of ER chaperone expression reduce the misfolded proteins in the ER. AMP-activated protein kinase (AMPK) is a key regulatory enzyme involved in energy homeostasis during hypoxia. It has been shown that AMPK activation is associated with inhibition of protein synthesis via phosphorylation of elongation factor 2 (eEF2) in cardiomyocytes. We therefore examined whether AMPK attenuates hypoxia-induced ER stress in neonatal rat cardiomyocytes. We found that hypoxia induced ER stress, as assessed by the expression of CHOP and BiP and cleavage of caspase 12. Knockdown of CHOP or caspase 12 through small interfering RNA (siRNA) resulted in decreased expression of cleaved poly(ADP-ribose) polymerase following exposure to hypoxia. We also found that hypoxia-induced CHOP expression and cleavage of caspase 12 were significantly inhibited by pretreatment with 5-aminoimidazole-4-carboxyamide-1--D-ribofuranoside (AICAR), a pharmacological activator of AMPK. In parallel, adenovirus expressing dominant-negative AMPK significantly attenuated the cardioprotective effects of AICAR. Knockdown of eEF2 phosphorylation using eEF2 kinase siRNA abolished these cardioprotective effects of AICAR. Taken together, these findings demonstrate that activation of AMPK contributes to protection of the heart against hypoxic injury through attenuation of ER stress and that attenuation of protein synthesis via eEF2 inactivation may be the mechanism of cardioprotection by AMPK.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.