Rhabdomyosarcoma (RMS) is the most common soft-tissue sarcoma in childhood. Here we studied 60 RMSs using whole-exome/-transcriptome sequencing, copy number (CN) and DNA methylome analyses to unravel the genetic/epigenetic basis of RMS. On the basis of methylation patterns, RMS is clustered into four distinct subtypes, which exhibits remarkable correlation with mutation/CN profiles, histological phenotypes and clinical behaviours. A1 and A2 subtypes, especially A1, largely correspond to alveolar histology with frequent PAX3/7 fusions and alterations in cell cycle regulators. In contrast, mostly showing embryonal histology, both E1 and E2 subtypes are characterized by high frequency of CN alterations and/or allelic imbalances, FGFR4/RAS/AKT pathway mutations and PTEN mutations/methylation and in E2, also by p53 inactivation. Despite the better prognosis of embryonal RMS, patients in the E2 are likely to have a poor prognosis. Our results highlight the close relationships of the methylation status and gene mutations with the biological behaviour in RMS.
Purpose: Seventy to eighty percent of rhabdomyosarcoma (RMS) tumors retain wild-type p53.The tumor suppressor p53 plays a central role in inducing cell cycle arrest or apoptosis in response to various stresses. p53 protein levels are regulated by MDM2 through ubiquitin-dependent degradation. In this study, we evaluated whether nutlin-3, a recently developed small-molecule antagonist of MDM2, has an effect on p53-dependent cell cycle arrest and apoptosis in cultured human RMS cell lines. Experimental Design: Five RMS cell lines with different p53 statuses and MDM2 expression levels were treated with nutlin-3. Gene expression patterns, cell viability, cell cycle, and apoptosis after nutlin-3 treatment, and antitumor activity of combination treatment with vincristine or actinomycin D were assessed. Results: Significant p53 activation was observed in wild-type p53 cell lines after nutlin-3 treatment. p53 activation led to cell cycle arrest in parallel with increased p21expression. Furthermore, these cell lines underwent p53-dependent apoptosis, concomitant with elevation of proapoptotic genes and activation of caspase-3. The effect of nutlin-3 was almost the same in terms of half maximal inhibitory concentration and apoptosis whether or not MDM2 was overexpressed. Nutlin-3 did not induce either cell cycle arrest or apoptosis in p53 mutant cell lines. A combination of vincristine or actinomycin D with nutlin-3 enhanced the antitumor activity in RMS cell lines with wild-type p53. Conclusions: Nutlin-3 effectively restored p53 function in both normal MDM2 expression and MDM2 overexpression RMS cell lines with wild-type p53. p53 restoration therapy is a potential therapeutic strategy for refractory RMS with wild-type p53.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.