HP1 family proteins are adaptor molecules, containing two related chromo domains that are required for chromatin packaging and gene silencing. Here we present the structure of the chromo shadow domain from mouse HP1b bound to a peptide containing a consensus PXVXL motif found in many HP1 binding partners. The shadow domain exhibits a novel mode of peptide recognition, where the peptide binds across the dimer interface, sandwiched in a b-sheet between strands from each monomer. The structure allows us to predict which other shadow domains bind similar PXVXL motif-containing peptides and provides a framework for predicting the sequence specificity of the others. We show that targeting of HP1b to heterochromatin requires shadow domain interactions with PXVXL-containing proteins in addition to chromo domain recognition of Lys-9-methylated histone H3. Interestingly, it also appears to require the simultaneous recognition of two Lys-9-methylated histone H3 molecules. This finding implies a further complexity to the histone code for regulation of chromatin structure and suggests how binding of HP1 family proteins may lead to its condensation.
Intracellular energy balance is important for cell survival. In eukaryotic cells, the most energy-consuming process is ribosome biosynthesis, which adapts to changes in intracellular energy status. However, the mechanism that links energy status and ribosome biosynthesis is largely unknown. Here, we describe eNoSC, a protein complex that senses energy status and controls rRNA transcription. eNoSC contains Nucleomethylin, which binds histone H3 dimethylated Lys9 in the rDNA locus, in a complex with SIRT1 and SUV39H1. Both SIRT1 and SUV39H1 are required for energy-dependent transcriptional repression, suggesting that a change in the NAD(+)/NADH ratio induced by reduction of energy status could activate SIRT1, leading to deacetylation of histone H3 and dimethylation at Lys9 by SUV39H1, thus establishing silent chromatin in the rDNA locus. Furthermore, eNoSC promotes restoration of energy balance by limiting rRNA transcription, thus protecting cells from energy deprivation-dependent apoptosis. These findings provide key insight into the mechanisms of energy homeostasis in cells.
We previously identified and purified a nucleolar phosphoprotein, nucleophosmin/B23, as a stimulatory factor for replication from the adenovirus chromatin. We show here that nucleophosmin/B23 functions as a histone chaperone protein such as nucleoplasmin, TAF-I, and NAP-I. Nucleophosmin/B23 was shown to bind to histones, preferentially to histone H3, to mediate formation of nucleosome, and to decondense sperm chromatin. These activities of B23 were dependent on its acidic regions as other histone chaperones, suggesting that B23/ nucleophosmin is a member of histone chaperone proteins. ß 2001 Published by Elsevier Science B.V. on behalf of the Federation of European Biochemical Societies.
NPM1/Nucleophosmin/B23, also termed NO38 or numatrin, is an acidic nucleolar protein that plays multiple roles in cell growth and proliferation. In general, the expression level of B23 is proportional to the cell growth rate, suggesting that it plays a positive role(s) in cell growth and proliferation. It is important to note that the deletion of the B23 gene and expression of an aberrant type of this gene--caused by gene conversion via translocation or reading-frame shift via nucleotides insertion-have been observed in diverse haematopoietic malignancies. Thus, it is important to understand the function of B23 in the regulation of cell growth and proliferation. In addition, B23 has been reported to undergo a variety of post-translational modifications such as phosphorylation, ubiquitination, SUMOylation, acetylation and poly-(ADP-ribosyl)ation. In this review, the basic structure and functions of B23 as well as the regulation of these functions are summarized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.