Summary• Leaf nitrogen (N) and phosphorus (P) concentrations are correlated in plants. Higher-level phylogenetic effects can influence leaf N and P. By contrast, little is known about the phylogenetic variation in the leaf accumulation of most other elements in plant tissues, including elements with quantitatively lesser roles in metabolism than N, and elements that are nonessential for plant growth.• Here the leaf composition of 42 elements is reported from a statistically unstructured data set comprising over 2000 leaf samples, representing 670 species and 138 families of terrestrial plants.• Over 25% of the total variation in leaf element composition could be assigned to the family level and above for 21 of these elements. The remaining variation corresponded to differences between species within families, to differences between sites which were likely to be caused by soil and climatic factors, and to variation caused by sampling techniques.• While the majority of variation in leaf mineral composition is undoubtedly associated with nonevolutionary factors, identifying higher-level phylogenetic variation in leaf elemental composition increases our understanding of terrestrial nutrient cycles and the transfer of toxic elements from soils to living organisms. Identifying mechanisms by which different plant families control their leaf elemental concentration remains a challenge.New Phytologist (2007) 174: 516 -523
Tropical peatlands have accumulated huge soil carbon over millennia. However, the carbon pool is presently disturbed on a large scale by land development and management, and consequently has become vulnerable. Peat degradation occurs most rapidly and massively in Indonesia, because of fires, drainage, and deforestation of swamp forests coexisting with tropical peat. Peat burning releases carbon dioxide (CO2) intensively but occasionally, whereas drainage increases CO2 emission steadily through the acceleration of aerobic peat decomposition. Therefore, tropical peatlands present the threat of switching from a carbon sink to a carbon source to the atmosphere. However, the ecosystem‐scale carbon exchange is still not known in tropical peatlands. A long‐term field experiment in Central Kalimantan, Indonesia showed that tropical peat ecosystems, including a relatively intact peat swamp forest with little drainage (UF), a drained swamp forest (DF), and a drained burnt swamp forest (DB), functioned as net carbon sources. Mean annual net ecosystem CO2 exchange (NEE) (± a standard deviation) for 4 years from July 2004 to July 2008 was 174 ± 203, 328 ± 204 and 499 ± 72 gC m−2 yr−1, respectively, for the UF, DF, and DB sites. The carbon emissions increased according to disturbance degrees. We found that the carbon balance of each ecosystem was chiefly controlled by groundwater level (GWL). The NEE showed a linear relationship with GWL on an annual basis. The relationships suggest that annual CO2 emissions increase by 79–238 gC m−2 every 0.1 m of GWL lowering probably because of the enhancement of oxidative peat decomposition. In addition, CO2 uptake by vegetation photosynthesis was reduced by shading due to dense smoke from peat fires ignited accidentally or for agricultural practices. Our results may indicate that tropical peatland ecosystems are no longer a carbon sink under the pressure of human activities.
As most soil phosphates exist as insoluble inorganic phosphate and organic phosphates, higher plants have developed several strategies for adaptation to low phosphorus (P). These include the secretion of acid phosphatase and organic acids, induction of the inorganic phosphate (Pi) transporter and the substitution of some enzyme activities as alternative pathways to increase P utilization efficiency. It has been proposed that plants also have a ' pho regulon' system, as observed in yeast and Escherichia coli ; however, the detail of the regulation system for gene expression on P status is still unclear in plants. To investigate the alteration of gene expression of rice roots grown under P-deficient conditions, a transcriptomic analysis was conducted using a cDNA microarray on rice. Based on the changes of gene expression under a -P treatment, the up-regulation of some genes due to P deficiency was confirmed. Some new important metabolic changes are suggested, namely: (1) acceleration of carbon supply for organic acid synthesis through glycolysis; (2) alteration of lipid metabolism; (3) rearrangement of compounds for cell wall; and (4) changes of gene expression related to the response for metallic elements such as Al, Fe and Zn.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.