digested by collagenase/trypsin, and the digested cardiac cells were allowed to attach to the plates overnight. The attached cells included macrophages and myofibroblasts (positive for α smooth muscle actin [αSMA]) as well as other cardiac cells (Supplemental Figure 1B). Notably, cardiac myofibroblasts seemed to be more difficult than cardiac macrophages to collect using our isolation method from infarcted hearts because, as revealed by our immunohistochemical analysis, the number of cardiac myofibroblasts was the same as that of cardiac macrophages in the infarcted area (Supplemental Figure 1C). When the overnight-attached cells were cultured in 10% FBS/DMEM for more than 6 days, almost all of the cells on the plates were positive for αSMA and SM22α, 2 myofibroblast marker proteins (18, 19) (>97.9% and >93.8%, respectively) (Supplemental Figure 1, D and E), indicating that the cells were primarily composed of cardiac myofibroblasts. This is probably because only myofibroblasts were able to grow rapidly in the culture medium.Isolated cardiac macrophages and myofibroblasts were allowed to engulf fluorescently labeled apoptotic cells, and we assessed the fluorescence taken up by cardiac macrophages and administration promoted the restoration of cardiac function and morphology after MI, suggesting that MFG-E8 is a new therapeutic target for the treatment of MI.
Efficient engulfment of apoptotic cells is critical for maintaining tissue homoeostasis. When phagocytes recognize ‘eat me’ signals presented on the surface of apoptotic cells, this subsequently induces cytoskeletal rearrangement of phagocytes for the engulfment through Rac1 activation. However, the intracellular signalling cascades that result in Rac1 activation remain largely unknown. Here we show that G-protein-coupled receptor kinase 6 (GRK6) is involved in apoptotic cell clearance. GRK6 cooperates with GIT1 to activate Rac1, which promotes apoptotic engulfment independently from the two known DOCK180/ELMO/Rac1 and GULP1/Rac1 engulfment pathways. As a consequence, GRK6-deficient mice develop an autoimmune disease. GRK6-deficient mice also have increased iron stores in splenic red pulp in which F4/80+ macrophages are responsible for senescent red blood cell clearance. Our results reveal previously unrecognized roles for GRK6 in regulating apoptotic engulfment and its fundamental importance in immune and iron homoeostasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.