Sinusoidal vasoconstriction, in which hepatic stellate cells operate as contractile machinery, has been suggested to play a pivotal role in the pathophysiology of portal hypertension. We investigated whether sphingosine 1-phosphate (S1P) stimulates contractility of those cells and enhances portal vein pressure in isolated perfused rat livers with Rho activation by way of S1P receptor 2 (S1P 2 ). Rho and its effector, Rho kinase, reportedly contribute to the pathophysiology of portal hypertension. Thus, a potential effect of S1P 2 antagonism on portal hypertension was examined. Intravenous infusion of the S1P 2 antagonist, JTE-013, at 1 mg/kg body weight reduced portal vein pressure by 24% without affecting mean arterial pressure in cirrhotic rats induced by bile duct ligation at 4 weeks after the operation, whereas the same amount of S1P 2 antagonist did not alter portal vein pressure and mean arterial pressure in control sham-operated rats. Rho kinase activity in the livers was enhanced in bile duct-ligated rats compared to sham-operated rats, and this enhanced Rho kinase activity in bile duct-ligated livers was reduced after infusion of the S1P 2 antagonist. S1P 2 messenger RNA (mRNA) expression, but not S1P 1 or S1P 3 , was increased in bile ductligated livers of rats and mice and also in culture-activated rat hepatic stellate cells. S1P 2 expression, determined in S1P LacZ =þ 2 mice, was highly increased in hepatic stellate cells of bile duct-ligated livers. Furthermore, the increase of Rho kinase activity in bile duct-ligated livers was observed as early as 7 days after the operation in wildtype mice, but was less in S1P À=À 2 mice. Conclusion: S1P may play an important role in the pathophysiology of portal hypertension with Rho kinase activation by way of S1P 2 . The S1P 2 antagonist merits consideration as a novel therapeutic agent for portal hypertension.
Aim: Vascular calcification (VC) is a risk factor of cardiovascular and all-cause mortality in patients with chronic kidney disease (CKD). CKD–mineral and bone metabolism disorder is an important problem in patients with renal failure. Abnormal levels of serum phosphate and calcium affect CKD–mineral and bone metabolism disorder and contribute to bone disease, VC, and cardiovascular disease. Hypercalcemia is a contributing factor in progression of VC in patients with CKD. However, the mechanisms of how calcium promotes intracellular calcification are still unclear. This study aimed to examine the mechanisms underlying calcium-induced calcification in a rat aortic tissue culture model.Methods: Aortic segments from 7-week-old male Sprague–Dawley rats were cultured in serum-supplemented medium for 10 days. We added high calcium (HiCa; calcium 3.0 mM) to high phosphate (HPi; phosphate 3.8 mM) medium to accelerate phosphate and calcium-induced VC. We used phosphonoformic acid and the calcimimetic R-568 to determine whether the mechanism of calcification involves Pit-1 or the calcium-sensing receptor.Results: Medial VC was significantly augmented by HPi+HiCa medium compared with HPi alone (300%, p < 0.05), and was associated with upregulation of Pit-1 protein. Pit-1 protein concentrations in HPi+HiCa medium were greater than those in HPi medium. Phosphonoformic acid completely negated the augmentation of medial VC induced by HPi+HiCa. R-568 had no additive direct effect on medial VC.Conclusion: These results indicated that exposure to HPi+HiCa accelerates medial VC, and this is mediated through Pit-1, not the calcium-sensing receptor.
Previous clinical and experimental studies have indicated that magnesium may prevent vascular calcification (VC), but mechanistic characterization has not been reported. This study investigated the influence of increasing magnesium concentrations on VC in a rat aortic tissue culture model. Aortic segments from male Sprague-Dawley rats were incubated in serum-supplemented high-phosphate medium for 10 days. The magnesium concentration in this medium was increased to demonstrate its role in preventing VC, which was assessed by imaging and spectroscopy. The mineral composition of the calcification was analyzed using Fourier transform infrared (FTIR) spectroscopic imaging, scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) mapping. Magnesium supplementation of high-phosphate medium dose-dependently suppressed VC (quantified as aortic calcium content), and almost ablated it at 2.4 mm magnesium. The FTIR images and SEM-EDX maps indicated that the distribution of phosphate (as hydroxyapatite), phosphorus and Mg corresponded with calcium content in the aortic ring and VC. The inhibitory effect of magnesium supplementation on VC was partially reduced by 2-aminoethoxy-diphenylborate, an inhibitor of TRPM7. Furthermore, phosphate transporter-1 (Pit-1) protein expression was increased in tissues cultured in HP medium and was gradually-and dose dependently-decreased by magnesium. We conclude that a mechanism involving TRPM7 and Pit-1 underpins the magnesium-mediated reversal of high-phosphate-associated VC.
Background: Recent studies suggest that prebiotic and/or probiotic treatments ameliorate kidney function in humans and animals by improving the gut environment. However, the gut microbiota and kidney disease interactions remain to be determined. This study investigated whether synbiotics modulate the gut microbiota and ameliorate kidney function using a rat model of chronic kidney disease (CKD). As uremic toxins are associated with CKD-related mineral and bone disorder, the secondary aim was to evaluate the relationship between synbiotics and secondary hyperparathyroidism (SHPT). Methods: 5/6 nephrectomy (Nx) rats were developed as the CKD model. Sham-operated (sham) rats were used as the control. To investigate the effectiveness of prebiotics (glutamine, dietary fiber, and oligosaccharide) and probiotics (Bifidobacterium longum strain; GFOB diet), rats were randomly assigned to 4 groups: Nx group fed the GFOB diet (n = 10); Nx group fed the control (CON) diet (n = 10); sham group fed the GFOB diet (n = 5); and sham group fed the control diet (n = 5). Blood, feces, and kidney samples were collected and analyzed. Results: Serum creatinine (Cre) and blood urea nitrogen in the Nx GFOB group were significantly lower than those in the Nx CON group. Serum indoxyl sulfate in the Nx GFOB group was lower than that in the Nx CON group, and significantly correlated with serum Cre. Inorganic phosphorus and intact parathyroid hormone in the Nx GFOB group were significantly lower than those in the Nx CON group. Conclusion: Improving the gut environment using synbiotics ameliorated kidney function and might be a pharmacological treatment for SHPT without any serious adverse events.
Recent technical advances have made fluorescent in situ hybridization (ISH) a pivotal method to analyze neural tissue. In a highly sensitive ISH, it is important to reduce tissue autofluorescence. We developed a photobleaching device using a light-emitting diode (LED) illuminator to quench autofluorescence in neural tissue. This device was equipped with 12 high-power LEDs (30 W per single LED) and an evaporative cooling system, and these features achieved highly efficient bleaching of autofluorescence and minimized tissue damage. Even after 60 min of photobleaching with evaporative cooling, the temperature gain of the tissue slide was suppressed almost completely. The autofluorescence of lipofuscin-like granules completely disappeared after 60 min of photobleaching, as did other background autofluorescence observed in the mouse cortex and hippocampus. In combination with the recently developed fluorescent ISH method using the hybridization chain reaction (HCR), high signal/noise ratio imaging was achieved without reduction of ISH sensitivity to visualize rare mRNA at single copy resolution by quenching autofluorescence. Photobleaching by the LED illuminator was also effective in quenching the fluorescent staining of ISH-HCR. We performed multiround ISH by repeating the cycle of HCR staining, confocal imaging, and photobleaching. In addition to the two-round ISH, fluorescent immunohistochemistry or fluorescent Nissl staining was conducted on the same tissue. This LED illuminator provides a quick and simple way to reduce autofluorescence and quench fluorescent dyes for multiround ISH with minimum tissue degradation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.