Relaxin-like factor (RLF), also called insulin-like peptide 3 (INSL3), is a member of the insulin/relaxin gene family and is produced by testicular Leydig cells. While the understanding of its effects is accumulating, very little is known about the structural and functional properties of native INSL3. Here, we demonstrate that native INSL3 isolated from goat testes is a single-chain structure with full biological activity, and is constitutively expressed and secreted by Leydig cells. Using a series of chromatography steps, native INSL3 was highly purified as a single 12-kDa peak as revealed by SDS-PAGE. MS/MS analysis provided 72% sequence coverage and revealed a distinct single-chain structure consisting of the B-, C-, and A-domains deduced previously from the INSL3 cDNA sequence. Moreover, the N-terminal peptide was 6 amino acid residues longer than predicted. Native INSL3 exhibited full bioactivity in HEK-293 cells expressing the receptor for INSL3. Immunoelectron microscopy and Western blot analysis revealed that INSL3 was secreted by Leydig cells through the constitutive pathway into blood and body fluids. We conclude, therefore, that goat INSL3 is constitutively secreted from Leydig cells as a B-C-A single-chain structure with full biological activity.
Relaxin-like factor (RLF), also called insulin-like peptide 3 (INSL3), is a member of the insulin/relaxin gene family and is produced by testicular Leydig cells. While the understanding of its effects is growing, very little is known about the structural and functional properties of native INSL3. Here, we demonstrate that native INSL3 isolated from goat testes is a single-chain structure with full biological activity, and is constitutively expressed and secreted by Leydig cells. Using a series of chromatography steps, native INSL3 was highly purified as a single 12-kDa peak as revealed by SDS-PAGE. MS/MS analysis provided 81% sequence coverage and revealed a distinct single-chain structure consisting of the B-, C-, and A-domains deduced previously from the INSL3 cDNA sequence. Moreover, the N-terminal peptide was six amino acid residues longer than predicted. Native INSL3 exhibited full bioactivity in HEK-293 cells expressing the receptor for INSL3. Immunoelectron microscopy and Western blot analysis revealed that INSL3 was secreted by Leydig cells through the constitutive pathway into blood and body fluids. We conclude, therefore, that goat INSL3 is constitutively secreted from Leydig cells as a B-C-A single-chain structure with full biological activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.