Objective
TDP-43 is deposited as cytoplasmic and intranuclear inclusions in brains of subjects with frontotemporal lobar degeneration with ubiquitinated inclusions (FTLD-U) and amyotrophic lateral sclerosis (ALS). Previous studies reported that abnormal phosphorylation takes place in deposited TDP-43. The aim of this study was to identify the phosphorylation sites and responsible kinases, and to clarify the pathological significance of phosphorylation of TDP-43.
Methods
We generated multiple antibodies specific to phosphorylated TDP-43 by immunizing phosphopeptides of TDP-43, and analyzed FTLD-U and ALS brains by immunohistochemistry, immunoelectron microscopy and immunoblots. Additionally, we performed investigations aimed at identifying the responsible kinases and we assessed the effects of phosphorylation on TDP-43 oligomerization and fibrillization.
Results
We identified multiple phosphorylation sites in carboxyl-terminal regions of deposited TDP-43. Phosphorylation-specific antibodies stained more inclusions than antibodies to ubiquitin and, unlike existing commercially-available anti-TDP-43 antibodies, did not stain normal nuclei. Ultrastructurally, these antibodies labeled abnormal fibers of 15 nm diameter, and on immunoblots recognized hyperphosphorylated TDP-43 at 45 kDa, with additional 22–28 kDa fragments in sarkosyl-insoluble fractions from FTLD-U and ALS brains. The phosphorylated epitopes were generated by casein kinase 1 and 2, and phosphorylation led to increased oligomerization and fibrillization of TDP-43.
Interpretation
These results suggest that phosphorylated TDP-43 is a major component of the inclusions, and that abnormal phosphorylation of TDP-43 is a critical step in the pathogenesis of FTLD-U and ALS. Phosphorylation-specific antibodies will be powerful tools for the investigation of these disorders.
Amyotrophic lateral sclerosis (ALS), a fatal disease causing progressive loss of motor neurons, still has no effective treatment. We developed a phenotypic screen to repurpose existing drugs using ALS motor neuron survival as readout. Motor neurons were generated from induced pluripotent stem cells (iPSCs) derived from an ALS patient with a mutation in superoxide dismutase 1 (). Results of the screen showed that more than half of the hits targeted the Src/c-Abl signaling pathway. Src/c-Abl inhibitors increased survival of ALS iPSC-derived motor neurons in vitro. Knockdown of Src or c-Abl with small interfering RNAs (siRNAs) also rescued ALS motor neuron degeneration. One of the hits, bosutinib, boosted autophagy, reduced the amount of misfolded mutant SOD1 protein, and attenuated altered expression of mitochondrial genes. Bosutinib also increased survival in vitro of ALS iPSC-derived motor neurons from patients with sporadic ALS or other forms of familial ALS caused by mutations in TAR DNA binding protein () or repeat expansions in Furthermore, bosutinib treatment modestly extended survival of a mouse model of ALS with an mutation, suggesting that Src/c-Abl may be a potentially useful target for developing new drugs to treat ALS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.