Electronic conductivity of molecular wires is a critical fundamental issue in molecular electronics. pi-Conjugated redox molecular wires with the superior long-range electron-transport ability could be constructed on a gold surface through the stepwise ligand-metal coordination method. The beta(d) value, indicating the degree of decrease in the electron-transfer rate constant with distance along the molecular wire between the electrode and the redox active species at the terminal of the wire, were 0.008-0.07 A(-1) and 0.002-0.004 A(-1) for molecular wires of bis(terpyridine)iron and bis(terpyridine)cobalt complex oligomers, respectively. The influences on beta(d) by the chemical structure of molecular wires and the terminal redox units, temperature, electric field, and electrolyte concentration were clarified. The results indicate that facile sequential electron hopping between neighboring metal-complex units within the wire is responsible for the high electron-transport ability.
Anthraquinone-bridged mononuclear and dinuclear complexes, [PtCl(AQ-amide-tpy)](PF6) (1), [Pt2Cl2(AQ-amide-tpy2)](PF6)2 (2), and [Pt2Cl2(AQ-eth-tpy2)](PF6)2 (3), were synthesized and their photochemical properties were investigated. Amide-bound mononuclear complex 1 exhibited only metal-to-ligand charge transfer (MLCT) absorption and emission, whereas dinuclear complex 2 exhibited a low-energy emission around 700 nm at room temperature. Emission lifetime analysis indicated that this emission was originated from the metal-metal-to-ligand charge transfer (MMLCT) excited state, implying the existence of an intramolecular Pt-Pt interaction at the photoexcited state. 3 with rigid ethynylene linkers showed a low-energy absorption around 520 nm (epsilon = approximately 1100 M(-1) cm(-1)) in addition to an 1MLCT absorption, which was ascribed to a 3MLCT absorption from the consideration of the Pt-Pt distance on a geometry-optimized structure. The emission of 3 appeared at 600 nm, which is higher in energy compared with the emission of 2. It is postulated that the restriction of the Pt-Pt distance flexibility in the rigid structure of 3 prevents the significant increase of the Pt-Pt interaction at the excited state.
Summary: A new bis(terpyridine) ligand with an anthraquinone linker was synthesized. Stepwise coordination reactions at the gold surface using this ligand gave homo-metal oligomer wires up to pentamer, [nFeL 1 ] (n ¼ 1-5), and hetero-metal oligomer wires with ferrocene as the terminal group, [1FeL 1 1FeL 2 Fc]. Electrochemical properties of these modified electrodes were examined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.