Plant posture can play a key role in the health of aquatic vegetation, by setting drag, controlling light availability, and mediating the exchange of nutrients and oxygen. We study the flow-induced reconfiguration of buoyant, flexible aquatic vegetation through a combination of laboratory flume experiments and theoretical modeling. The laboratory experiments measure drag and posture for model blades that span the natural range for seagrass stiffness and buoyancy. The theoretical model calculates plant posture based on a force balance that includes posture-dependent drag and the restoring forces due to vegetation stiffness and buoyancy. When the hydrodynamic forcing is small compared to the restoring forces, the model blades remain upright and the quadratic law, F x 3 U 2 , predicts the drag well (F x is drag, U is velocity). When the hydrodynamic forcing exceeds the restoring forces, the blades are pushed over by the flow, and the quadratic drag law no longer applies. The model successfully predicts when this transition occurs. The model also predicts that when the dominant restoring mechanism is blade stiffness, reconfiguration leads to the scaling F x 3 U 4/3 . When the dominant restoring mechanism is blade buoyancy, reconfiguration can lead to a sub-linear increase in drag with velocity, i.e., F x 3 U a with a , 1. Laboratory measurements confirm both these predictions. The model also predicts drag and posture successfully for natural systems ranging from seagrasses to marine macroalgae of more complex morphology.
[1] Laboratory measurements reveal the flow structure within and above a model seagrass meadow (dynamically similar to Zostera marina) forced by progressive waves. Despite being driven by purely oscillatory flow, a mean current in the direction of wave propagation is generated within the meadow. This mean current is forced by a nonzero wave stress, similar to the streaming observed in wave boundary layers. The measured mean current is roughly four times that predicted by laminar boundary layer theory, with magnitudes as high as 38% of the near-bed orbital velocity. A simple theoretical model is developed to predict the magnitude of this mean current based on the energy dissipated within the meadow. Unlike unidirectional flow, which can be significantly damped within a meadow, the in-canopy orbital velocity is not significantly damped. Consistent with previous studies, the reduction of in-canopy velocity is a function of the ratio of orbital excursion and blade spacing.Citation: Luhar, M., S. Coutu, E. Infantes, S. Fox, and H. Nepf (2010), Wave-induced velocities inside a model seagrass bed,
This paper summarizes recent advances in vegetation hydrodynamics and uses the new concepts to explore not only how vegetation impacts flow and transport, but also how flow feedbacks can influence vegetation spatial structure. Sparse and dense submerged canopies are defined based on the relative contribution of turbulent stress and canopy drag to the momentum balance. In sparse canopies turbulent stress remains elevated within the canopy and suspended sediment concentration is comparable to that in unvegetated regions. In dense canopies turbulent stress is reduced by canopy drag and suspended sediment concentration is also reduced. Further, for dense canopies, the length-scale of turbulence penetration into the canopy, δ e , is shown to predict both the roughness height and the displacement height of the overflow profile. In a second case study, the relation between flow speed and spatial structure of a seagrass meadow gives insight into the stability of different spatial structures, defined by the area fraction covered by vegetation. In the last case study, a momentum balance suggests that in natural channels the total resistance is set predominantly by the area fraction occupied by vegetation, called the blockage factor, with little direct dependence on the specific canopy morphology.
In this paper, we present an experimental and numerical study that describes the motion of flexible blades, scaled to be dynamically similar to natural aquatic vegetation, forced by wave-induced oscillatory flows. For the conditions tested, blade motion is governed primarily by two dimensionless variables: (i) the Cauchy number, Ca, which represents the ratio of the hydrodynamic forcing to the restoring force due to blade stiffness, and (ii) the ratio of the blade length to the wave orbital excursion, L. For flexible blades with Ca 1, the relationship between drag and velocity can be described by two different scaling laws at the large-and small-excursion limits. For large excursions (L 1), the flow resembles a unidirectional current and the scaling laws developed for steady-flow reconfiguration studies hold. For small excursions (L 1), the beam equations may be linearized and a different scaling law for drag applies. The experimental force measurements suggest that the small-excursion scaling applies even for intermediate cases with L ∼ O(1). The numerical model employs the well-known Morison force formulation, and adequately reproduces the observed blade dynamics and measured hydrodynamic forces without the use of any fitted parameters. For Ca 1, the movement of the flexible blades reduces the measured and modeled hydrodynamic drag relative to a rigid blade of the same morphology. However, in some cases with Ca ∼ O(1), the measured hydrodynamic forces generated by the flexible blades exceed those generated by rigid blades, but this is not reproduced in the model. Observations of blade motion suggest that this unusual behavior is related to an unsteady vortex shedding event, which the simple numerical model cannot reproduce. Finally, we also discuss implications for the modeling of wave energy dissipation over canopies of natural aquatic vegetation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.