Posttranslational modification of proteins by small ubiquitin-like modifier (SUMO) plays essential roles in eukaryotic growth and development. Many covalently modified SUMO targets have been identified; however, the extent and significance of noncovalent interactions of SUMO with cellular proteins is poorly understood. Here, large-scale yeast two-hybrid screens repeatedly identified a surprisingly small number of proteins that interacted with three Arabidopsis SUMO isoforms. These SUMO-interacting proteins are nuclear and fall into two main categories: six histone or DNA methyltransferses or demethylases and six proteins that we show to be the evolutionary and functional homologs of SUMOtargeted ubiquitin ligases (STUbLs). The selectivity of the screen for several methylases and demethylases suggests that SUMO interaction with these proteins has a significant impact on chromatin methylation. Furthermore, the Arabidopsis STUbLs (AT-STUbLs) complemented to varying degrees the growth defects of the Schizosaccharomyces pombe STUbL mutant rfp1/rfp2, and three of them also complemented the genome integrity defects of this mutant, demonstrating that these proteins show STUbL activity. We show that one of the AT-STUbLs least related to the S. pombe protein, AT-STUbL4, has acquired a plant-specific function in the floral transition. It reduces protein levels of CYCLING DOF FACTOR 2, hence increasing transcript levels of CONSTANS and promoting flowering through the photoperiodic pathway.SIM | Slx5/Slx8 | Nucleolus | Flowering time | CDF
Ustilago maydis is a biotrophic fungus that induces formation of tumors in maize (Zea mays L). In a recent study we identified See1 (Seedling efficient effector 1) as an U. maydis organ-specific effector required for tumor formation in leaves. See1 is required for U. maydis induced reactivation of plant DNA synthesis during leaf tumor progression. The protein is secreted from biotrophic hyphae and localizes to the cytoplasm and nucleus of plant cell. See1 interacts with maize SGT1, a cell cycle and immune regulator, interfering with its MAPK-triggered phosphorylation. Here, we present new data on the conservation of See1 in other closely related smuts and experimental data on the functionality of See1 ortholog in Ustilago hordei, the causal agent of barley covered smut disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.