Oxycyanation of alkenes would allow the direct construction of useful β-hydroxy nitrile scaffolds. However, only limited examples of such reactions have been reported, and some problems including limited substrate scope and the lack of diastereocontrol in the case of the oxycyanation of internal alkenes have arisen. We herein report on the intermolecular oxycyanation of alkenes using p-toluenesulfonyl cyanide (TsCN) in the presence of tris(pentafluorophenyl)borane (B(C 6 F 5 ) 3 ) as a catalyst, affording products that contain a sulfinyloxy group and a cyano group at the vicinal position. The reaction features a stereospecific syn-addition. The reaction also shows a broad substrate scope with good functional group tolerance. Mechanistic investigations by experimental studies and density functional theory (DFT) calculations revealed that the reaction proceeds via an unprecedented stereospecific mechanism through the electrophilic cyanation of alkenes, in which B(C 6 F 5 ) 3 efficiently activates TsCN through the coordination of the cyano group to the boron center.
Oxycyanation of alkenes would allow the direct construction of useful β-hydroxy nitrile scaffolds. However, only limited examples of such reactions have been reported, and some problems including limited substrate scope and the lack of diastereocontrol in the case of the oxycyanation of internal alkenes have arisen. We herein report on the intermolecular oxycyanation of alkenes using p-toluenesulfonyl cyanide (TsCN) in the presence of tris(pentafluorophenyl)borane (B(C 6 F 5 ) 3 ) as a catalyst, affording products that contain a sulfinyloxy group and a cyano group at the vicinal position. The reaction features a stereospecific syn-addition. The reaction also shows a broad substrate scope with good functional group tolerance. Mechanistic investigations by experimental studies and density functional theory (DFT) calculations revealed that the reaction proceeds via an unprecedented stereospecific mechanism through the electrophilic cyanation of alkenes, in which B(C 6 F 5 ) 3 efficiently activates TsCN through the coordination of the cyano group to the boron center.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.