We hypothesized that anorexia induced by novelty stress caused by exposure to a novel environment may be due to activation of corticotropin-releasing factor (CRF) and subsequently mediated by decreasing peripheral ghrelin concentration via serotonin (5-HT) and melanocortin-4 receptors (MC4R). Each mouse was transferred from group-housed cages to individual cages to establish the novelty stress. We observed the effect of changes in feeding behavior in a novel environment using the method of transferring group-housed mice to individual cages. We investigated the effect of an intracerebroventricular injection of antagonists/agonists of CRF1/2 receptors (CRF1/2Rs), 5-HT(1B)/(2C) receptors (5-HT(1B)/(2C)R), and MC4R to clarify the role of each receptor on the decrease in food intake. Plasma ghrelin levels were also measured. The novelty stress caused a reduction in food intake that was abolished by administering a CRF1R antagonist. Three hours after the novelty stress, appetite reduction was associated with reduced levels of neuropeptide Y/agouti-related peptide mRNA, increased levels of proopiomelanocortin mRNA in the hypothalamus, and a decrease in plasma ghrelin level. Administering a CRF1R antagonist, a 5-HT(1B)/(2C)R antagonist, an MC4R antagonist, exogenous ghrelin, and an enhancer of ghrelin secretion, rikkunshito, resolved the reduction in food intake 3 h after the novelty stress by enhancing circulating ghrelin concentrations. We showed that anorexia during a novelty stress is a process in which CRF1R is activated at the early stage of appetite loss and is subsequently activated by a 5-HT(1B)/(2C)R and MC4R stimulus, leading to decreased peripheral ghrelin concentrations.
This study was conducted to clarify the role of serotonin (5-hydroxytryptamine, 5-HT) 2C receptor (5-HT2CR) signaling during novelty-induced hypophagia in aged mice. Male C57BL/6J mice [6-week-old (young) and 79-80-week-old (aged) mice] were exposed to a novel environment, and its effects on feeding behavior, stress hormones, and appetite-related factors were examined. Exposure of aged mice to a novel environment suppressed food intake and increased corticosterone secretion. These responses were marked compared with those in young mice. The expression in hypothalamic corticotropin-releasing factor (CRF), pituitary CRF1R and proopiomelanocortin mRNA in aged mice exposed to a novel environment was increased or tended to increase, compared to control mice. 5-HT2CR antagonist, SB242084 or rikkunshito administration attenuated the decrease in food intake and increased stress hormone levels in aged mice exposed to the environmental change. The 5-HT2CR mRNA expression in paraventricular nucleus was significantly enhanced, when aged mice was exposure to the novel environment. Thus, novelty-induced hypophagia in aged mice resulted, at least in part, from up-regulated hypothalamic 5-HT2CR function. In conclusion, 5-HT2CR signaling enhancement and the subsequent activation of the CRF neuron were involved in novelty-induced hypophagia in aged mice, and the 5-HT2CR antagonists offer a promising therapeutic option for depression.
The combination of depression and anorexia may influence morbidity and progressive physical disability in the elderly. Gender differences exist in hypothalamic-pituitary-adrenal axis activation following stress exposure. The objective of this study was to investigate gender differences in feeding behavior under novelty stress in aged mice. Food intake measurement, immunohistochemical assessment, and mRNA expression analysis were conducted to investigate the role of serotonin 2C receptor (5-HT(2C)R) and its relationship with ghrelin in stress-induced suppression of feeding behavior in aged mice. After exposure to novelty stress, a 21-fold increase in plasma corticosterone and remarkable suppression of food intake were observed in aged male mice. Furthermore, a 5-HT(2C)R agonist suppressed food intake in aged male mice. Novelty stress induced a 7-fold increase in 5-HT(2C)R and c-Fos co-expressing cells in the paraventricular nucleus of the hypothalamus in aged male mice but caused no change in aged female mice. Plasma acylated ghrelin levels decreased in stressed aged male mice and administration of the 5-HT(2C)R antagonist inhibited this decrease. The 5-HT(2C)R antagonist also reversed the suppression of food intake in estrogen receptor α agonist-treated aged male mice. Therefore, conspicuously suppressed feeding behavior in novelty stress-exposed aged male mice may be mediated by 5-HT(2C)R hypersensitivity, leading to hypoghrelinemia. The hypersensitivity may partly be due to estrogen receptor activation in aged male mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.