ABSTRACT:The signaling lymphocyte activation molecule (SLAM) is a receptor for morbilliviruses. To understand the recent host range expansion of canine distemper virus (CDV) in carnivores, we determined the nucleotide sequences of SLAMs of various carnivores and generated three-dimensional homology SLAM models. Thirty-four amino acid residues were found for the candidates binding to CDV on the interface of the carnivore SLAMs. SLAM of the domestic dog (Canis lupus familiaris) were similar to those of other members of the suborder Caniformia, indicating that the animals in this group have similar sensitivity to dog CDV. However, they were different at nine positions from those of felids. Among the nine residues, four of domestic cat (Felis catus) SLAM (72, 76, 82, and 129) and three of lion (Panthera leo persica) SLAM (72, 82, and 129) were associated with charge alterations, suggesting that the felid interfaces have lower affinities to dog CDV. Only the residue at 76 was different between domestic cat and lion SLAM interfaces. The domestic cat SLAM had threonine at 76, whereas the lion SLAM had arginine, a positively charged residue like that of the dog SLAM. The cat SLAM with threonine is likely to have lower affinity to CDV-H and to confer higher resistance against dog CDV. Thus, the four residues (72, 76, 82, and 129) on carnivore SLAMs are important for the determination of affinity and sensitivity with CDV. Additionally, the CDV-H protein of felid strains had a substitution of histidine for tyrosine at 549 of dog CDV-H and may have higher affinity to lion SLAM. Three-dimensional model construction is a new risk assessment method of morbillivirus infectivity. Because the method is applicable to animals that have no information about virus infection, it is especially useful for morbillivirus risk assessment and wildlife conservation.
The Japanese otter lived throughout four main Japanese islands, but it has not been observed in the wild since 1979 and was declared extinct in 2012. Although recent taxonomic and molecular phylogenetic studies suggest that it should be treated as an independent species, International Union for Conservation of Nature Red List considers it as subspecies of Lutra lutra. Therefore, the taxonomic status of this species needs to be resolved. Here we determined the complete mitochondrial genome of two Japanese otters caught in Kanagawa and Kochi prefectures and five Eurasian otters (L. lutra). We reconstructed a molecular phylogenetic tree to estimate the phylogenetic position of the Japanese otter in Lutrinae using the Japanese otters and the other 11 Lutrinae species on the basis of ND5 (692 bp) and cytochrome b (1,140 bp) sequences. We observed that the two Japanese otters had close relationships with Eurasian otters, forming a monophyletic group (100% bootstrap probability). To elucidate detailed phylogenetic relationships among the Japanese and Eurasian otters, we reconstructed a maximum likelihood tree according to mitochondrial genome sequences (14,740 bp). The Japanese otter (JO1) collected in Kanagawa was deeply nested in the Eurasian otter clade, whereas the Japanese otter (JO2) collected in Kochi formed a distinct independent lineage in the Lutra clade. The estimated molecular divergences time for the ancestral lineages of the Japanese otters was 0.10 Ma (95%: 0.06–0.16 Ma) and 1.27 Ma (95%: 0.98–1.59 Ma) for JO1 and JO2 lineages, respectively. Thus, JO1 was identified as a member of L. lutra; JO2 represented the old Japanese otter lineage, which may be a distinct new species or subspecies of Lutra. We suggest that the ancestral population of the JO2 lineage migrated to Japan via the land bridge that existed between western Japanese islands and Asian continent at 1.27 Ma.
Several species of captive birds at zoological gardens of Japan were found to be infected with avian Plasmodium. However, incriminated vector mosquito species have not been identified yet. To indicate the competent vectors of avian malaria parasite, we collected mosquitoes at a zoological garden in Japan and examined for the avian malaria parasite DNA. Totally, 1,361 mosquitoes of 11 species were collected in the zoological garden of Kanagawa, the south of Tokyo in Japan in 2005. Captured mosquitoes were pooled by each species, date collected, and location and used for DNA extraction. Eight out of 169 DNA samples were positive for the nested PCR of avian Plasmodium cyt b gene. Estimated minimum infection rates of mosquitoes were 5.9 per 1,000. The PCR positive mosquito species were Culex pipiens group and Lutzia vorax. Some DNA sequences amplified from collected mosquitoes were identical to avian Plasmodium lineages detected from captive birds in the same zoological garden studied. Our results suggest that C. pipiens group and L. vorax could be incriminated vectors of avian malaria parasite transmitting in captive birds kept in the zoological garden in Japan.
ABSTRACT. An adult male white eared-pheasant (Crossoptilon crossoptilon) at a Japanese zoo exhibited lethargy and emaciation. Microscopic examination of a blood smear revealed a haemosporidian parasitic infection. Based on the morphological characteristics and molecular analysis of the parasite, it was identified as Plasmodium (Bennettinia) juxtanucleare. This is the first report of P. juxtanucleare infection in bird species belonging to the genus Crossoptilon. Caution against avian malaria infection is required for the conservation of endangered bird species in zoos. KEY WORDS: haemosporidian parasite, Plasmodium (Bennettinia) juxtanucleare, white eared-pheasant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.