High mobility group box 1 (HMGB1) has been reported as a damage-associated molecular pattern (DAMP) molecule that is released from damaged or dead cells and induces inflammation and subsequent innate immunity. However, the role of HMGB1 in the anti-tumor immunity is unclear since inflammation in the tumor microenvironment also contributes to tumor promotion and progression. In the present study, we established HMGB1-knockout clones from B16F10 and CT26 murine tumors by genome editing using the CRISPR/Cas9 system and investigated the role of HMGB1 in anti-tumor immunity. We found that 1) knockout of HMGB1 in the tumor cells suppressed in vivo, but not in vitro, tumor growth, 2) the suppression of the in vivo tumor growth was mediated by CD8 T cells, and 3) infiltration of CD8 T cells, macrophages and dendritic cells into the tumor tissues was accelerated in HMGB1-knockout tumors. These results demonstrated that knockout of HMGB1 in tumor cells converted tumors from poor infiltration of immune cells called “cold” to “immune-inflamed” or “hot” and inhibited in vivo tumor growth mediated by cytotoxic T lymphocytes. Infiltration of immune cells to the tumor microenvironment is an important step in the series known as the cancer immunity cycle. Thus, manipulation of tumor-derived HMGB1 might be applicable to improve the clinical outcomes of cancer immunotherapies, including immune checkpoint blockades and cancer vaccine therapies.
High-mobility group box 1 (HMGB1) has been reported as a damage-associated molecular pattern (DAMP) molecule that is released from damaged or dead cells and induces inflammation and subsequent innate immunity. However, the role of HMGB1 in the anti-tumor immunity is unclear since inflammation in the tumor microenvironment also contributes to tumor promotion and progression. In the present study, we established HMGB1-knockout clones from B16F10 and CT26 murine tumors by genome editing using the CRISPR/Cas9 system and investigated the role of HMGB1 in anti-tumor immunity. We found that (1) knockout of HMGB1 in the tumor cells suppressed in vivo, but not in vitro, tumor growth, (2) the suppression of the in vivo tumor growth was mediated by CD8 T cells, and (3) infiltration of CD8 T cells, macrophages and dendritic cells into the tumor tissues was accelerated in HMGB1-knockout tumors. These results demonstrated that knockout of HMGB1 in tumor cells converted tumors from poor infiltration of immune cells called “cold” to “immune-inflamed” or “hot” and inhibited in vivo tumor growth mediated by cytotoxic T lymphocytes. Infiltration of immune cells to the tumor microenvironment is an important step in the series known as the cancer immunity cycle. Thus, manipulation of tumor-derived HMGB1 might be applicable to improve the clinical outcomes of cancer immunotherapies, including immune checkpoint blockades and cancer vaccine therapies.
Accumulated clinical data of immune checkpoint blockades have suggested the importance of neoantigens in cancer immunity. Tumor antigens are released from dead cancer cells together with cellular components, such as damage‐associated molecular patterns (DAMPs), into the tumor microenvironment. We recently reported that high mobility group box 1 (HMGB1), a representative DAMP molecule, showed a negative impact on anti‐tumor immunity. However, a positive role of HMGB1 in the initiation of innate and subsequent adaptive immunity has also been demonstrated; thus, the effects of HMGB1 on anti‐tumor immunity have not been well understood. In this study, we identified nine immunogenic neoantigen epitopes of B16F10 murine melanoma cells and subsequently investigated the effects of suppression of HMGB1 on the induction of neoantigen‐specific immunity using HMGB1‐knockout tumors. Neoantigen‐reactive T cells were expanded in B16F10 tumor‐bearing mice, and T cell receptor repertoire analysis suggested that neoantigen‐reactive T cells were oligo‐clonally increased in B16F10 tumor bearers. An increase of neoantigen‐reactive T cells and oligoclonal expansion of the T cells were similarly detected in HMGB1‐knockout tumor‐bearing mice. The induction of neoantigen‐specific immunity under the suppression of HMGB1 in the tumor microenvironment shown in this study supports further development of combination therapy of HMGB1 suppression with neoantigen‐targeted cancer immunotherapies, including immune checkpoint blockade therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.