Little is known about how pro-obesity diets regulate tissue stem and progenitor cell function. Here we find that high fat diet (HFD)-induced obesity augments the numbers and function of Lgr5+ intestinal stem-cells (ISCs) of the mammalian intestine. Mechanistically, HFD induces a robust peroxisome proliferator-activated receptor delta (PPAR-d) signature in intestinal stem and (non-ISC) progenitor cells, and pharmacologic activation of PPAR-d recapitulates the effects of a HFD on these cells. Like a HFD, ex vivo treatment of intestinal organoid cultures with fatty acid constituents of the HFD enhances the self-renewal potential of these organoid bodies in a PPAR-d dependent manner. Interestingly, HFD- and agonist-activated PPAR-d signaling endow organoid-initiating capacity to progenitors, and enforced PPAR-d signaling permits these progenitors to form in vivo tumors upon loss of the tumor suppressor Apc. These findings highlight how diet-modulated PPAR-d activation alters not only the function of intestinal stem and progenitor cells, but also their capacity to initiate tumors.
Diet has a profound effect on tissue regeneration in diverse organisms, and low caloric states such as intermittent fasting have beneficial effects on organismal health and age-associated loss of tissue function. The role of adult stem and progenitor cells in responding to short-term fasting and whether such responses improve regeneration are not well studied. Here we show that a 24 hr fast augments intestinal stem cell (ISC) function in young and aged mice by inducing a fatty acid oxidation (FAO) program and that pharmacological activation of this program mimics many effects of fasting. Acute genetic disruption of Cpt1a, the rate-limiting enzyme in FAO, abrogates ISC-enhancing effects of fasting, but long-term Cpt1a deletion decreases ISC numbers and function, implicating a role for FAO in ISC maintenance. These findings highlight a role for FAO in mediating pro-regenerative effects of fasting in intestinal biology, and they may represent a viable strategy for enhancing intestinal regeneration.
A decline in stem cell function impairs tissue regeneration during aging, but the role of the stem cell supporting niche in aging is not well understood. The small intestine is maintained by actively cycling intestinal stem cells (ISCs) that are regulated by the Paneth cell niche 1,2. Here we show that the regenerative potential of human and mouse intestinal epithelium diminishes with age due to defects in both stem cells and their niche. The functional decline was caused by decrease in stemness maintaining Wnt signalling due to production of an extracellular Wnt-inhibitor, Notum, in aged Paneth cells. Mechanistically, high mTORC1 activity in old Paneth cells inhibits PPARa activity 3 and lowered PPARa increased Notum expression. Genetic targeting of Notum or Wnt-supplementation restored function of old intestinal organoids. Moreover, pharmacological inhibition of Notum in mice enhanced the regenerative capacity of old stem cells and promoted recovery from chemotherapy induced damage. Our results reveal an unappreciated role for the stem cell niche in aging and demonstrate that targeting of Notum can promote regeneration of old tissues. Tissue turnover and regenerative capacity decrease upon aging in many tissue types 4-6. The intestinal epithelium is one of the fastest renewing tissues in the human body and has been reported to regenerate without loss of self-renewal in long term in vitro organoid culture 7. However,
SUMMARY The intestinal epithelium is continuously regenerated by highly proliferative Lgr5+ intestinal stem cells (ISCs). The existence of a population of quiescent ISCs has been suggested yet its identity and features remain controversial. Here we describe that the expression of the RNA-binding protein Mex3a labels a subpopulation of Lgr5+ cells that divide less frequently and contribute to regenerate all intestinal lineages with slow kinetics. Single cell transcriptomic analysis revealed two classes of Lgr5-high cells, one of them defined by the Mex3a-expression program and by low levels of proliferation genes. Lineage tracing experiments show that large fraction of Mex3a+ cell population is continuously recalled into the rapidly dividing self-renewing ISC pool in homeostatic conditions. Chemotherapy and radiation target preferentially rapidly dividing Lgr5+ cells but spare the Mex3a-high/Lgr5+ population, which helps sustain the renewal of the intestinal epithelium during treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.