A simple fabrication method for cell micropatterns on hydrogel substrates was developed using an inkjet printing system that induced hydrogel micropatterns. The hydrogel micropatterns were created from inks resulting in cell-adhesive and non-cell-adhesive printed regions by horseradish peroxidase-catalyzed reaction onto non-cell-adhesive and cell-adhesive hydrogel substrates, respectively, to obtain the cell micropatterns. Cell-adhesive and non-cell-adhesive regions were obtained from gelatin and alginate derivatives, respectively. The cells on the cell-adhesive regions were successfully aligned, resulting in recognizable patterns. Furthermore, the proposed system permits the patterning of multiple cell types by switching the non-cell-adhesive region to the cell-adhesive region in the presence of growing cells. Also, we could fabricate disc- and filament-shaped small tissues by degrading the non-cell-adhesive substrates having dot- and line-shaped cell-adhesive micropatterns using alginate-lyase. These results indicate that our system is useful for fabrication of tailor-made cell patterns and microtissues with the shape defined by the micropattern, and will be conducive to a diverse range of biological applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.