Hydrophobically ethoxylated modified urethane (HEUR) form the flower micelles and transient network structures through the aggregation of end groups depending on the polymer concentration. The HEUR networks show the viscoelastic relaxation which is described by the Maxwell model. Although there have been many attempts to understand and predict the molecular mechanism, the full understanding remains incomplete. To understand the relaxation mechanism of associative polymers, we measured the linear viscoelasticity and the diffusibility using the fluorescence recovery after photobleaching method. With increasing the polymer concentration, the self-diffusion coefficient decreased, while the relaxation time increased, suggesting that the viscoelastic relaxation is correlated with the diffusion of the polymers. The calculated diffusion distance of the HEUR chains within the viscoelastic relaxation time is 100 times larger than the size of a HEUR chain. This significant deviation suggests that some of the HEUR chains diffuse quickly through the unimer and flower micelles at low concentrations and through the recombination process of the network strands at high concentrations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.