This study aimed to assess the effect of luseogliflozin on liver fat deposition and compare luseogliflozin to metformin in type 2 diabetes (T2D) patients with non-alcoholic fatty liver disease (NAFLD). Thirty-two T2D patients with NAFLD diagnosed by computed tomography or abdominal sonography were recruited. Participants were randomly assigned to receive either luseogliflozin (2.5 mg, newly administered) or metformin (1500 mg, newly or additionally administrated). Data on the liver-to-spleen attenuation ratio (L/S), visceral fat area, body mass index, glycated hemoglobin (HbA1c), alanine aminotransferase (ALT), fasting plasma glucose, C-peptide immunoreactivity (CPR), and CPR index were collected at baseline and after 6 months. The change in L/S was significantly greater in the luseogliflozin group than in the metformin group. Similarly, the changes in the visceral fat area, HbA1c, and body mass index were significantly greater in the luseogliflozin group than in the metformin group. The changes in ALT, fasting glucose, CPR, and CPR index were not significant in both groups. In conclusion, luseogliflozin significantly reduced liver fat deposition as compared to metformin, which may indicate clinical relevant benefits for NAFLD.
Aims/Introduction: A gold standard in the diagnosis of diabetic polyneuropathy (DPN) is a nerve conduction study. However, as a nerve conduction study requires expensive equipment and well-trained technicians, it is largely avoided when diagnosing DPN in clinical settings. Here, we validated a novel diagnostic method for DPN using a pointof-care nerve conduction device as an alternative way of diagnosis using a standard electromyography system. Materials and Methods: We used a multiple regression analysis to examine associations of nerve conduction parameters obtained from the device, DPNCheck TM , with the severity of DPN categorized by the Baba classification among 375 participants with type 2 diabetes. A nerve conduction study using a conventional electromyography system was implemented to differentiate the severity in the Baba classification. The diagnostic properties of the device were evaluated using a receiver operating characteristic curve. Results: A multiple regression model to predict the severity of DPN was generated using sural nerve conduction data obtained from the device as follows: the severity of DPN = 2.046 + 0.509 9 ln(age [years])-0.033 9 (nerve conduction velocity [m/s])-0.622 9 ln(amplitude of sensory nerve action potential [µV]), r = 0.649. Using a cutoff value of 1.3065 in the model, moderate-to-severe DPN was effectively diagnosed (area under the receiver operating characteristic curve 0.871, sensitivity 70.1%, specificity 87.7%, positive predictive value 83.0%, negative predictive value 77.3%, positive likelihood ratio 5.67, negative likelihood ratio 0.34). Conclusions: Nerve conduction parameters in the sural nerve acquired by the handheld device successfully predict the severity of DPN.
Objective The aim of this study was to determine whether nocturnal hypoglycemia may be predicted according to morning glucose levels. Methods We retrospectively evaluated 106 patients with type 2 diabetes who underwent continuous glucose monitoring during admission. The pre-breakfast glucose level (Pre-breakfast level), highest postprandial glucose level within 3 hours after breakfast (Highest level), time from the start of breakfast to the highest postprandial glucose level (Highest time), difference between the pre-breakfast and highest postprandial breakfast glucose levels (Increase), area under the glucose curve (≥180 mg/dL) within 3 hours after breakfast (Morning AUC), post-breakfast glucose gradient (Gradient), and the increase-to-pre-breakfast ratio (Increase/Pre-breakfast) were calculated. The subjects were divided into hypoglycemic and non-hypoglycemic patients and compared for the above parameters using the t-test. A receiver operating characteristic analysis was used to determine the optimal cut-off values to predict nocturnal hypoglycemia (Hypoglycemia). Results Twenty-eight patients (26.4%) had hypoglycemia. The Pre-breakfast levels were significantly lower in patients with hypoglycemia than those without (p=0.03). The Increases were significantly higher in patients with hypoglycemia than those without (p=0.047). The Increase/Pre-breakfast ratio were significantly larger in patients with hypoglycemia than those without (p=0.0002). Their cut-off values were as follows (level, sensitivity, specificity, and area under the curve): 123 mg/dL, 0.89, 0.55, and 0.78 (p<0.0001); 90.5 mg/dL, 0.75, 0.64, and 0.76 (p<0.0001); and 90.2%, 0.75, 0.76, and 0.78 (p<0.0001), respectively. Conclusion Major increases between the pre- and post-breakfast glucose levels may predict nocturnal hypoglycemia in patients with type 2 diabetes.
Aims/Introduction Diabetic polyneuropathy (DPN) and diabetic retinopathy (DR) are traditionally regarded as microvascular complications. However, these complications may share similar neurodegenerative pathologies. Here we evaluate the correlations in the severity of DPN and changes in the thickness of neuroretinal layers to elucidate whether these complications exist at similar stages of progression. Materials and Methods A total of 43 patients with type 2 diabetes underwent a nerve conduction study (NCS), a macular optical coherence tomography, and a carotid artery ultrasound scan. Diabetic polyneuropathy was classified according to Baba’s classification using NCS. The retina was automatically segmented into four layers; ganglion cell complex (GCC), inner nuclear layer/outer plexiform layer (INL/OPL), outer nuclear layer/photoreceptor inner and outer segments, and retinal pigment epithelium (RPE). The thickness of each retinal layer was separately analyzed for the fovea and the parafovea. Results Fourteen patients were classified as having moderate to severe diabetic polyneuropathy. The thicknesses of the foveal and parafoveal INL/OPL increased in patients with diabetic polyneuropathy compared with patients without. The thickness of the parafoveal retinal pigment epithelium decreased in patients with diabetic polyneuropathy. The thinning of parafoveal ganglion cell complex and foveal and parafoveal retinal pigment epithelium were positively correlated with deterioration of nerve functions in the nerve conduction study, but the thickening of INL/OPL was positively correlated with the nerve function deterioration. The thinning of parafoveal ganglion cell complex and foveal retinal pigment epithelium were positively correlated with the thickening of the carotid intima‐media. Conclusions Depending on the progression of diabetic polyneuropathy, the ganglion cell complex and retinal pigment epithelium became thinner and the INL/OPL became thicker. These retinal changes might be noteworthy for pathological investigations and for the assessment of diabetic polyneuropathy and diabetic retinopathy.
Objective To investigate the relationship between patient characteristics and morning glycemic variability. Methods We retrospectively evaluated 106 patients with type 2 diabetes who underwent continuous glucose monitoring during admission. The highest postprandial glucose level (within 3 hours after breakfast; ‘highest level’), the time from the start of breakfast to the highest postprandial glucose level (‘highest time’), the difference between the pre-breakfast and highest postprandial breakfast glucose level (‘increase’), the area under the curve (AUC; ≥180 mg/dL) for the glycemic variability within 3 hours after breakfast (‘morning AUC’), and the post-breakfast glucose gradient (‘gradient’) were calculated. We analyzed the associations between these factors and nocturnal hypoglycemia and the patients’ characteristics by using a regression analysis. Results After stepwise multivariate adjustment, significant independent associations were found between ‘highest level’ and high age, low BMI, and high HbA1c; ‘highest time’ and high HbA1c, low C-peptide immunoreactivity (CPR), and low fasting plasma glucose (FPG); the ‘increase’ and high age, low BMI, high HbA1c, low FPG and hypoglycemia; ‘morning AUC’ and high age, high HbA1c and hypoglycemia; and ‘gradient’ and long duration of diabetes and low BMI. Conclusion Higher age and lower BMI are associated with higher ‘highest’ and ‘increase’ levels. Higher HbA1c levels were linked to a longer ‘highest time’, and longer durations of the diabetes, while lower BMI values were related to a higher ‘gradient’.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.