The main objective of this experiment was to determine the effects of yogurt supplementation on fat deposition, oxidative stress, inflammation and fibrosis in the liver of rats with high-fat (HF) diet-induced obesity. Male Wistar rats were used in this study and were separated into the following four different groups: the control, control + yogurt, high fat and high fat+ yogurt groups. The high fat groups received a HF diet for eight weeks. A 5% yogurt (w/w) supplement was also provided to rats fed the HF diet. Yogurt supplementation prevented glucose intolerance and normalized liver-specific enzyme activities in the HF diet-fed rats. Yogurt supplementation also significantly reduced the levels of oxidative stress markers in the plasma and liver of HF diet-fed rats. Moreover, inflammatory cell infiltration, collagen deposition and fibrosis in the liver of HF diet-fed rats were also prevented by yogurt supplementation. Furthermore, yogurt supplementation normalized the intestinal lining and brush border in HF diet-fed rats. This study suggests that yogurt supplementation potentially represents an alternative therapy for the prevention of metabolic syndrome in HF diet-fed rats.
Background: Cardamom is a well-known spice in Indian subcontinent, used in culinary and traditional medicine practices since ancient times. The current investigation was untaken to evaluate the potential benefit of cardamom powder supplementation in high carbohydrate high fat (HCHF) diet induced obese rats. Method: Male Wistar rats (28 rats) were divided into four different groups such as Control, Control + cardamom, HCHF, HCHF + cardamom. High carbohydrate and high fat (HCHF) diet was prepared in our laboratory. Oral glucose tolerance test, organs wet weight measurements and oxidative stress parameters analysis as well as liver marker enzymes such as alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) activities were assayed on the tissues collected from the rats. Plasma lipids profiles were also measured in all groups of animals. Moreover, histological staining was also performed to evaluate inflammatory cells infiltration and fibrosis in liver. Results: The current investigation showed that, HCHF diet feeding in rats developed glucose intolerance and increased peritoneal fat deposition compared to control rats. Cardamom powder supplementation improved the glucose intolerance significantly (p > 0.05) and prevented the abdominal fat deposition in HCHF diet fed rats. HCHF diet feeding in rats also developed dyslipidemia, increased fat deposition and inflammation in liver compared to control rats. Cardamom powder supplementation significantly prevented the rise of lipid parameters (p > 0.05) in HCHF diet fed rats. Histological assessments confirmed that HCHF diet increased the fat deposition and inflammatory cells infiltration in liver which was normalized by cardamom powder supplementation in HCHF diet fed rats. Furthermore, HCHF diet increased lipid peroxidation, decreased antioxidant enzymes activities and increased advanced protein oxidation product level significantly (p > 0.05) both in plasma and liver tissue which were modulated by cardamom powder supplementation in HCHF diet fed rats. HCHF diet feeding in rats also increased the ALT, AST and ALP enzyme activities in plasma which were also normalized by cardamom powder supplementation in HCHF diet fed rats. Moreover, cardamom powder supplementation ameliorated the fibrosis in liver of HCHF diet fed rats. Conclusion: This study suggests that, cardamom powder supplementation can prevent dyslipidemia, oxidative stress and hepatic damage in HCHF diet fed rats.
BackgroundObesity and related complications have now became epidemic both in developed and developing countries. Cafeteria type diet mainly composed of high fat high carbohydrate components which plays a significant role in the development of obesity and metabolic syndrome.This study investigated the effect of Syzygium cumini seed powder on fat accumulation and dyslipidemia in high carbohydrate high fat diet (HCHF) induced obese rats.MethodMale Wistar rats were fed with HCHF diet ad libitum, and the rats on HCHF diet were supplemented with Syzygium cumini seed powder for 56 days (2.5% w/w of diet). Oral glucose tolerance test, lipid parameters, liver marker enzymes (AST, ALT and ALP) and lipid peroxidation products were analyzed at the end of 56 days. Moreover, antioxidant enzyme activities were also measured in all groups of rats.ResultsSupplementation with Syzygium cumini seed powder significantly reduced body weight gain, white adipose tissue (WAT) weights, blood glucose, serum insulin, and plasma lipids such as total cholesterol, triglyceride, LDL and HDL concentration. Syzygium cumini seed powder supplementation in HCHF rats improved serum aspartate amino transferase (AST), alanine amino transferase (ALT), and alkaline phosphatase (ALP) activities. Syzygium cumini seed powder supplementation also reduced the hepatic thiobarbituric acid reactive substances (TBARS) and elevated the antioxidant enzyme superoxide dismutase (SOD) and catalase (CAT) activities as well as increased glutathione (GSH) concentration. In addition, histological assessment showed that Syzygium cumini seed powder supplementation prevented inflammatory cell infiltration; fatty droplet deposition and fibrosis in liver of HCHFD fed rats.ConclusionOur investigation suggests that Syzygium cumini seed powder supplementation prevents oxidative stress and showed anti-inflammatory and antifibrotic activity in liver of HCHF diet fed rats. In addition, Syzygium cumini seed powder may be beneficial in ameliorating insulin resistance and dyslipidemia probably by increasing lipid metabolism in liver of HCHF diet fed rats.
Diabetes is a leading cause of chronic kidney disease, and the high prevalence of sympathetic nervous system (SNS) hyperactivity in diabetic patients makes them further susceptible to SNS-mediated oxidative stress and accelerated kidney damage. Here, we investigated if canagliflozin can reverse isoprenaline (ISO)-induced renal oxidative damage in rats, a model that mimics SNS overstimulationinduced organ injuries in humans. We found that ISO administration elevates renal oxidative stress markers including malondialdehyde (MDA), advanced protein oxidation product (APOP), myeloperoxidase (MPO) and nitric oxide (NO), while depleting levels of endogenous antioxidants such as catalase (CAT), superoxide dismutase (SOD) and glutathione (GSH). Strikingly, canagliflozin treatment of ISO-treated rats not only prevents elevation of oxidative stress markers but also rescues levels of depleted antioxidants. Our results also show that canagliflozin stimulates antioxidant/antiinflammatory signaling pathways involving AMP-activated protein kinase (AMPK), Akt and eNOS, and inhibits iNOS and NADPH oxidase isoform 4 (NOX4), all of which are associated with oxidative stress and inflammation. Further, canagliflozin prevents ISO-induced apoptosis of kidney cells by inhibiting Bax protein upregulation and caspase-3 activation. Histological examination of kidney sections reveal that canagliflozin attenuates ISO-mediated increases in inflammatory cell infiltration, collagen deposition and fibrosis. Finally, consistent with these findings, canagliflozin treatment improves kidney function in ISO-treated rats, suggesting that the antioxidant effects may be clinically translatable. Diabetic kidney disease is a major risk factor for the development of chronic kidney disease affecting approximately 40% of global diabetic population 1. Diabetic kidney disease is associated with vascular inflammation, loss of renal vascular integrity and hypertension, leading to a progressive loss of renovascular function and renal failure 1. Importantly, there is a high prevalence of sympathetic nervous system (SNS) hyperactivity in diabetic patients associated with autonomic neuropathy and concomitant vagal impairment, making diabetic patients twice as likely to develop hypertension 2. Diabetic patients are also highly susceptible to chronic kidney disease due to renal oxidative damage and inflammation 2. High SNS drive stimulates β1 adrenergic receptors (β1-AR) in juxtaglomerular cells, increasing renin secretion and subsequent activation of the renin-angiotensin-aldosterone system (RAAS). RAAS creates a feed-forward mechanism that accelerates renovascular dysfunction and kidney
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.