This paper proposes a decentralized model predictive control method based on a dual decomposition technique. A model predictive control problem for a system with multiple subsystems is formulated as a convex optimization problem. In particular, we deal with the case where the control outputs of the subsystems have coupling constraints represented by linear equalities. A dual decomposition technique is applied to this problem in order to derive the dual problem with decoupled equality constraints. A projected subgradient method is used to solve the dual problem, which leads to a decentralized algorithm. In the algorithm, a small-scale problem is solved at each subsystem, and information exchange is performed in each group consisting of some subsystems. Also, it is shown that the computational complexity in the decentralized algorithm is reduced if the dynamics of the subsystems are all the same.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.