The post-translational acetylation of lysine residues is found in many nonhistone proteins and is involved in a wide range of biological processes. Recently, we showed that the nucleoprotein of the influenza A virus is acetylated by histone acetyltransferases (HATs), a phenomenon that affects viral transcription. Here, we report that the PA subunit of influenza A virus RNA-dependent RNA polymerase is acetylated by the HATs, P300/ CREB-binding protein-associated factor (PCAF), and general control nonderepressible 5 (GCN5), resulting in accelerated endonuclease activity. Specifically, the full-length PA subunit expressed in cultured 293T cells was found to be strongly acetylated. Moreover, the partial recombinant protein of the PA N-terminal region containing the endonuclease domain was also acetylated by PCAF and GCN5 in vitro, which facilitated its endonuclease activity. Mass spectrometry analyses identified K19 as a candidate acetylation target in the PA N-terminal region. Notably, the substitution of the lysine residue at position 19 with glutamine, a mimic of the acetyl-lysine residue, enhanced its endonuclease activity in vitro; this point mutation also accelerated influenza A virus RNA-dependent RNA polymerase activity in the cell. Our findings suggest that PA acetylation is important for the regulation of the endonuclease and RNA polymerase activities of the influenza A virus.
Parkinson’s disease (PD) is a progressive neurological disorder characterised by motor and non-motor deficits. Repetitive transcranial magnetic stimulation (rTMS) over the bilateral primary motor cortex at a high frequency (5 Hz or higher) is reported to be a potential treatment of PD. We aimed to assess the effect of rTMS on eye movement control in patients with PD in their ‘on’ state. We enrolled 14 patients with PD and assessed motor symptoms (Movement Disorder Society-Sponsored Unified Parkinson’s Disease Rating Scale; MDS-UPDRS) and eye movement performances (visually guided saccades, volitional anti-saccades, and small involuntary saccades during fixation) at baseline and after administering bilateral 10 Hz rTMS on leg region of the motor cortex. We confirmed that rTMS improved the MDS-UPDRS motor scores and found that rTMS improved the anti-saccade success rate, which requires adequate inhibition of the reflexive response. The improvement in anti-saccade success rate was correlated with that of the postural instability gait difficulty (PIGD) sub-scores of MDS-UPDRS and lower baseline Japanese version of the Montreal Cognitive Assessment scores. This result is consistent with previous findings that PIGD and inhibitory control deficits share common brain dysfunctions in PD. rTMS may alleviate dysfunctions of that circuit and have a clinical effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.